952 resultados para reasoning about loops


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A natural approach to representing and reasoning about temporal propositions (i.e., statements with time-dependent truth-values) is to associate them with time elements. In the literature, there are three choices regarding the primitive for the ontology of time: (1) instantaneous points, (2) durative intervals and (3) both points and intervals. Problems may arise when one conflates different views of temporal structure and questions whether some certain types of temporal propositions can be validly and meaningfully associated with different time elements. In this paper, we shall summarize an ontological glossary with respect to time elements, and diversify a wider range of meta-predicates for ascribing temporal propositions to time elements. Based on these, we shall also devise a versatile categorization of temporal propositions, which can subsume those representative categories proposed in the literature, including that of Vendler, of McDermott, of Allen, of Shoham, of Galton and of Terenziani and Torasso. It is demonstrated that the new categorization of propositions, together with the proposed range of meta-predicates, provides the expressive power for modeling some typical temporal terms/phenomena, such as starting-instant, stopping-instant, dividing-instant, instigation, termination and intermingling etc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generally speaking, the term temporal logic refers to any system of rules and symbolism for representing and reasoning about propositions qualified in terms of time. In computer science, particularly in the domain of Artificial Intelligence, there are mainly two known approaches to the representation of temporal information: modal logic approaches including tense logic and hybrid temporal logic, and predicate logic approaches including temporal arguement method and reified temporal logic. On one hand, while tense logic, hybrid temporal logic and temporal argument method enjoy formal theoretical foundations, their expressiveness has been criticised as not power enough for representing general temporal knowledge; on the other hand, although reified temporal logic provides greater expressive power, most of the current systems following the temporal reification lack of complete and sound axiomatic theories. With there observations in mind, a new reified temporal logic with clear syntax and semantics in terms of a sound and complete axiomatic formalism is introduced in this paper, which retains all the expressive power of temporal reification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A BSP (Bulk Synchronous Parallelism) computation is characterized by the generation of asynchronous messages in packages during independent execution of a number of processes and their subsequent delivery at synchronization points. Bundling messages together represents a significant departure from the traditional ‘one communication at a time’ approach. In this paper the semantic consequences of communication packaging are explored. In particular, the BSP communication structure is identified with a general form of substitution—predicate substitution. Predicate substitution provides a means of reasoning about the synchronized delivery of asynchronous communications when the immediate programming context does not explicitly refer to the variables that are to be updated (unlike traditional operations, such as the assignment $x := e$, where the names of the updated variables can be extracted from the context). Proofs of implementations of Newton's root finding method and prefix sum are used to illustrate the practical application of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Functional and non-functional concerns require different programming effort, different techniques and different methodologies when attempting to program efficient parallel/distributed applications. In this work we present a "programmer oriented" methodology based on formal tools that permits reasoning about parallel/distributed program development and refinement. The proposed methodology is semi-formal in that it does not require the exploitation of highly formal tools and techniques, while providing a palatable and effective support to programmers developing parallel/distributed applications, in particular when handling non-functional concerns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental results in reference to Brazilian children and adults are presented in the context of current discussions about essentialism and folkbiology. Using an adoption paradigm, we replicate the basic findings of a previous article in this journal concerning the early emergence in children of a birth-parent bias (Atran et al. 2001). This cognitive bias supports the claim that causal essentialism cross-culturally constrains the reasoning about the origin, development and maintenance of the characteristics and identity of living kinds. We also report some intriguing differences with earlier findings that speak to theoretical and methodological issues of cultural relativity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized that the development of mathematical skills is closely related to the development of logical abilities, a domain-general skill. In particular, we expected a close link between mathematical skills and the ability to reason independently of one's beliefs. Our results showed that this was indeed the case, with children with DD performing more poorly than controls, and high maths ability children showing outstanding skills in logical reasoning about belief-laden problems. Nevertheless, all groups performed poorly on structurally equivalent problems with belief-neutral content. This is in line with suggestions that abstract reasoning skills (i.e. the ability to reason about content without real-life referents) develops later than the ability to reason about belief-inconsistent fantasy content.A video abstract of this article can be viewed at http://www.youtube.com/watch?v=90DWY3O4xx8.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the behaviour of a set of services in a stressed web environment where performance patterns may be difficult to predict. In stressed environments the performances of some providers may degrade while the performances of others, with elastic resources, may improve. The allocation of web-based providers to users (brokering) is modelled by a strategic non-cooperative angel-daemon game with risk profiles. A risk profile specifies a bound on the number of unreliable service providers within an environment without identifying the names of these providers. Risk profiles offer a means of analysing the behaviour of broker agents which allocate service providers to users. A Nash equilibrium is a fixed point of such a game in which no user can locally improve their choice of provider – thus, a Nash equilibrium is a viable solution to the provider/user allocation problem. Angel daemon games provide a means of reasoning about stressed environments and offer the possibility of designing brokers using risk profiles and Nash equilibria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Boolean games are a framework for reasoning about the rational behavior of agents whose goals are formalized using propositional formulas. Compared to normal form games, a well-studied and related game framework, Boolean games allow for an intuitive and more compact representation of the agents’ goals. So far, Boolean games have been mainly studied in the literature from the Knowledge Representation perspective, and less attention has been paid on the algorithmic issues underlying the computation of solution concepts. Although some suggestions for solving specific classes of Boolean games have been made in the literature, there is currently no work available on the practical performance. In this paper, we propose the first technique to solve general Boolean games that does not require an exponential translation to normal-form games. Our method is based on disjunctive answer set programming and computes solutions (equilibria) of arbitrary Boolean games. It can be applied to a wide variety of solution concepts, and can naturally deal with extensions of Boolean games such as constraints and costs. We present detailed experimental results in which we compare the proposed method against a number of existing methods for solving specific classes of Boolean games, as well as adaptations of methods that were initially designed for normal-form games. We found that the heuristic methods that do not require all payoff matrix entries performed well for smaller Boolean games, while our ASP based technique is faster when the problem instances have a higher number of agents or action variables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Answer Set Programming (ASP) is a popular framework for modelling combinatorial problems. However, ASP cannot be used easily for reasoning about uncertain information. Possibilistic ASP (PASP) is an extension of ASP that combines possibilistic logic and ASP. In PASP a weight is associated with each rule, whereas this weight is interpreted as the certainty with which the conclusion can be established when the body is known to hold. As such, it allows us to model and reason about uncertain information in an intuitive way. In this paper we present new semantics for PASP in which rules are interpreted as constraints on possibility distributions. Special models of these constraints are then identified as possibilistic answer sets. In addition, since ASP is a special case of PASP in which all the rules are entirely certain, we obtain a new characterization of ASP in terms of constraints on possibility distributions. This allows us to uncover a new form of disjunction, called weak disjunction, that has not been previously considered in the literature. In addition to introducing and motivating the semantics of weak disjunction, we also pinpoint its computational complexity. In particular, while the complexity of most reasoning tasks coincides with standard disjunctive ASP, we find that brave reasoning for programs with weak disjunctions is easier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Boolean games are a framework for reasoning about the rational behaviour of agents, whose goals are formalized using propositional formulas. They offer an attractive alternative to normal-form games, because they allow for a more intuitive and more compact encoding. Unfortunately, however, there is currently no general, tailor-made method available to compute the equilibria of Boolean games. In this paper, we introduce a method for finding the pure Nash equilibria based on disjunctive answer set programming. Our method is furthermore capable of finding the core elements and the Pareto optimal equilibria, and can easily be modified to support other forms of optimality, thanks to the declarative nature of disjunctive answer set programming. Experimental results clearly demonstrate the effectiveness of the proposed method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many problems in artificial intelligence can be encoded as answer set programs (ASP) in which some rules are uncertain. ASP programs with incorrect rules may have erroneous conclusions, but due to the non-monotonic nature of ASP, omitting a correct rule may also lead to errors. To derive the most certain conclusions from an uncertain ASP program, we thus need to consider all situations in which some, none, or all of the least certain rules are omitted. This corresponds to treating some rules as optional and reasoning about which conclusions remain valid regardless of the inclusion of these optional rules. While a version of possibilistic ASP (PASP) based on this view has recently been introduced, no implementation is currently available. In this paper we propose a simulation of the main reasoning tasks in PASP using (disjunctive) ASP programs, allowing us to take advantage of state-of-the-art ASP solvers. Furthermore, we identify how several interesting AI problems can be naturally seen as special cases of the considered reasoning tasks, including cautious abductive reasoning and conformant planning. As such, the proposed simulation enables us to solve instances of the latter problem types that are more general than what current solvers can handle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the key issues in the computational representation of open societies relates to the introduction of norms that help to cope with the heterogeneity, the autonomy and the diversity of interests among their members. Research regarding this issue presents two omissions. One is the lack of a canonical model of norms that facilitates their implementation, and that allows us to describe the processes of reasoning about norms. The other refers to considering, in the model of normative multi-agent systems, the perspective of individual agents and what they might need to effectively reason about the society in which they participate. Both are the concerns of this paper, and the main objective is to present a formal normative framework for agent-based systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper continues a systematic approach to build natural deduction calculi and corresponding proof procedures for non-classical logics. Our attention is now paid to the framework of paraconsistent logics. These logics are used, in particular, for reasoning about systems where paradoxes do not lead to the `deductive explosion', i.e., where formulae of the type `A follows from false', for any A, are not valid. We formulate the natural deduction system for the logic PCont, explain its main concepts, define a proof searching technique and illustrate it by examples. The presentation is accompanied by demonstrating the correctness of these developments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic logic is an extension of modal logic originally intended for reasoning about computer programs. The method of proving correctness of properties of a computer program using the well-known Hoare Logic can be implemented by utilizing the robustness of dynamic logic. For a very broad range of languages and applications in program veri cation, a theorem prover named KIV (Karlsruhe Interactive Veri er) Theorem Prover has already been developed. But a high degree of automation and its complexity make it di cult to use it for educational purposes. My research work is motivated towards the design and implementation of a similar interactive theorem prover with educational use as its main design criteria. As the key purpose of this system is to serve as an educational tool, it is a self-explanatory system that explains every step of creating a derivation, i.e., proving a theorem. This deductive system is implemented in the platform-independent programming language Java. In addition, a very popular combination of a lexical analyzer generator, JFlex, and the parser generator BYacc/J for parsing formulas and programs has been used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Qualitative spatial reasoning (QSR) is an important field of AI that deals with qualitative aspects of spatial entities. Regions and their relationships are described in qualitative terms instead of numerical values. This approach models human based reasoning about such entities closer than other approaches. Any relationships between regions that we encounter in our daily life situations are normally formulated in natural language. For example, one can outline one's room plan to an expert by indicating which rooms should be connected to each other. Mereotopology as an area of QSR combines mereology, topology and algebraic methods. As mereotopology plays an important role in region based theories of space, our focus is on one of the most widely referenced formalisms for QSR, the region connection calculus (RCC). RCC is a first order theory based on a primitive connectedness relation, which is a binary symmetric relation satisfying some additional properties. By using this relation we can define a set of basic binary relations which have the property of being jointly exhaustive and pairwise disjoint (JEPD), which means that between any two spatial entities exactly one of the basic relations hold. Basic reasoning can now be done by using the composition operation on relations whose results are stored in a composition table. Relation algebras (RAs) have become a main entity for spatial reasoning in the area of QSR. These algebras are based on equational reasoning which can be used to derive further relations between regions in a certain situation. Any of those algebras describe the relation between regions up to a certain degree of detail. In this thesis we will use the method of splitting atoms in a RA in order to reproduce known algebras such as RCC15 and RCC25 systematically and to generate new algebras, and hence a more detailed description of regions, beyond RCC25.