953 resultados para reaction of 1-Alkinylamids
Resumo:
A simple and versatile method for the synthesis of 1,5-benzodiazepines from o-phenylenediamine and ketones in the presence of solvents and under solvent-free conditions that used an amorphous mesoporous iron aluminophosphate as catalyst was developed. High yields with excellent selectivity were obtained with a wide variety of ketones under mild reaction conditions. The catalyst had the advantages of ease of preparation, ease of handling, simple recovery, reusability, non toxicity, and being inexpensive.
Resumo:
The reaction of 2-formylbenzenesulfonyl chloride 1 and its pseudo isomer 2 with primary amines give either the corresponding sulfonamido Schiff bases or the corresponding 2-formylbenzenesulfonamide depending on the concentration of the amine used. The derivatives exist as an equilibrium mixture of the corresponding sulfonamide and 2-alkyl-3-hydroxy(or 3-aminoalkyl)-benzisothiazole-1,1-dioxide. Spectroscopic studies suggest that 2-formylbenzenesulfonamides exist as benzisothiazole-1,1-dioxides in the solid state, as a mixture of 2-formylbenzenesulfonamide and the corresponding benzisothiazole-1,1-dioxide in solution and as 2-formyl-benzenesulfonamides in the gas phase.
Resumo:
The temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) of thiophene over a series of Co-Mo/gamma-Al2O3, hydrodesulfurization (HDS) catalysts with varying Co to Mo ratios have been studied with the objective of understanding the promotional role of Co in the HDS reaction. As part of the study, the desorptions (TPD) and hydrogenations (TPSR) of butane, butene, and butadiene over these catalysts have also been investigated. The TPD of the hydrocarbons over catalysts containing no Co showed a single desorption profile while incorporation of Co created an additional site, with higher heats of desorption, without significantly affecting desorption from the original site. The TPSR measurements showed that the two sites had separate and independent activity for the hydrogenation of the C-4 hydrocarbons. The TPD of thiophene over catalysts with varying Co to Mo ratios showed a single desorption profile with identical heats of desorption, implying that Co does not affect or influence the adsorption sites for thiophene. The TPSR of the HDS of thiophene, however, showed that, although the products of the HDS reaction-butane, butene, and H2S-are the same irrespective of the Co content, the temperature profiles and the activation barriers for the formation of these species show considerable change with the Co/Co+Mo ratio. The results are discussed in light of the existing models for the promotional role of Co in the HDS reaction.
Resumo:
The synthesis, properties and crystal structure of the cage complex (1-hydroxy-8-methyl-3,6,10,13,15,18-hexaazabicyclo[6.6.5]nonadecane)cobalt(III) chloride hydrate ([Co(Me,OH-absar)] C13.H2O) are reported. The mechanism of the formation of this contracted cavity cage from a nitro-capped hexaazabicycloicosane type cage has been investigated. Treatment of (1-methyl-8-nitro-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane)cobalt(III) chloride ([Co(Me,NO2-sar)] 3+) with excess base in aqueous solution leads initially to rapid (t1/2 < 1 ms) and reversible deprotonation of one coordinated secondary amine. This species undergoes a retro-Mannich type reaction and imine hydrolysis (t1/2 almost-equal-to 90 s). Quenching the reaction with acid gives rise to a pair of isomeric intermediate species which have been isolated and characterized. They have a pendant arm macrocyclic structure, resulting from the loss of a methylene unit from one of the arms of the cap. Heating either isomer in aqueous solution gives the new cage compound with the contracted cap. It is postulated that this occurs through a Nef reaction, resulting in the formation of a ketone which then condenses with the coordinated primary amine. A comparison with the corresponding bicycloicosane analogue indicates a reduced chromophoric cavity size for the contracted cage. The reduction potential of the cobalt(III)/cobalt(II) couple is 170 mV more negative for the smaller cage, and, in the electronic spectrum of the cobalt(III) complex, the d-d transitions are both shifted to higher energy, corresponding to a stronger ligand field.
Resumo:
Diisopropoxytitanium(III) tetrahydroborate, ((PrO)-Pr-1)(2)TiBH4), generated in situ in dichloromethane from diisopropoxytitanium dichloride and benzyltriethylammonium borohydride in a 1:2 ratio selectively reduces aldehydes, ketones, acid chlorides, carboxylic acids, and N-Boc-protected amino acids to the corresponding alcohols in excellent yield under very mild reaction conditions (-78 to 25 degrees C).
Resumo:
The intercalation of pyridine in the layered manganese thiophosphate, MnPS3, has been examined in detail by a variety of techniques. The reaction is interesting since none of the anticipated changes in optical and electrical properties associated with intercalation of electron donating molecules is observed. The only notable change in the properties of the host lattice is in the nature of the low-temperature magnetic ordering; while MnPS3 orders antiferromagnetically below 78 K, the intercalated compound shows weak ferromagnetism probably due to a canted spin structure. Vibrational spectra clearly show that the intercalated species are pyridinium ions solvated by neutral pyridine molecules. The corresponding reduced sites of the host lattice, however, were never observed. The molecules in the solvation shell are exchangeable. Although the reaction appears to be topotactic and reversible, from XRD, a more detailed analysis of the products of deintercalation reveal that it is not so. The intercalation proceeds by an ion exchange/intercalation mechanism wherein the intercalated species are pyridinium ions solvated by neutral molecules with charge neutrality being preserved not by electron transfer but by a loss of Mn2+ ions from the lattice. The experimental evidence leading to this conclusion is discussed and it is shown that this model can account satisfactorily for the observed changes (or lack of it) in the optical, electrical, vibrational, and magnetic properties.
Resumo:
The triphenylphosphine deoxygenation of the polyperoxides, poly(styrene peroxide), poly(methyl methacrylate peroxide), and poly(alpha-methylstyrene peroxide) proceed via the phosphorane intermediates, which in the presence of moisture hydrolyze to give the respective diols. At higher temperatures and under dry conditions the phosphorane decomposes into epoxide and triphenylphosphine oxide. The reaction has been studied by H-1-, C-13-, and P-31-NMR spectroscopy. The results obtained are consistent with a concerted insertion of the biphile, triphenylphosphine, into the peroxy bond and this reaction pathway seems to be new as far as the chemistry of polyperoxides is concerned. Though the aim of this investigation was to test the selective deoxygenation of polyperoxide by triphenylphosphine as a method of preparing polyethers, it turned out to be a fruitful method of synthesis of stereospecific diols. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Aspirin anion appears to exist only fleetingly, rearranging via acetyl transfer to the ortho carboxylate group, as indicated by IR, UV and NMR. The resulting mixed anhydride cyclises to the more stable bicyclic orthoacetate isomer, a process facilitated by time and increasing pH. Mechanistic possibilities are discussed to explain these intriguing observations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Investigation of the reaction of La2CuO4 with several binary metal oxides in the solid state at elevated temperatures has revealed three different reaction pathways. Reaction of La2CuO4 with strongly acidic oxides such as Re2O7, MoO3, and V2O5 follows a metathesis route, yielding a mixture of products: La3ReO8/La2MoO6/LaVO4 and CuO. Oxides such as TiO2, MnO2, and RuO2 which are not so acidic yield addition products: La2CuMO6 (M = Ti, Mn, Ru). SnO2 is a special case which appears to follow a metathesis route, giving La2Sn2O7 pyrochlore and CuO, which on prolonged reaction transform to the layered perovskite La2CuSnO6. The reaction of La2CuO4 with lower valence oxides VO2 and MoO2, on the other hand, follows a novel redox metathesis route, yielding a mixture of LaVO4/LaCuO2 and La2MoO6/Cu, respectively. This result indicates that it is the redox reactivity involving V-IV + Cu-II --> V-V + Cu-I and Mo-IV + Cu-II --> Mo-VI + Cu-0, and not the acidity of the binary oxide, that controls the nature of the products formed in these cases. The general significance of these results toward the synthesis of complex metal oxides containing several metal atoms is discussed.
Resumo:
Various 1-acyl-2,4,10-trioxaadamantanes were prepared from the corresponding 1-methoxycarbonyl derivatives, via conversion to the N-acylpiperidine derivatives followed by reaction with a Grignard reagent in refluxing THF. These alpha-keto orthoformates were converted to the corresponding imines with 1-(S)-phenethyl amine (TiCl4/Et3N/toluene/reflux), with the Schiff bases being reduced further with NaBH4 (MeOH/0 degrees C) into the corresponding 1-(S)-phenethyl amines (diastereomeric excess 91:9 by NMR). Hydrogenolysis of the phenethyl group (Pd-C/MeOH) finally led to the 1-(aminoalkyl)trioxaadamantanes, which are chiral C-protected alpha-amino acids, in excellent overall yields. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of sym-N,N',N `'-triarylguanidines, ArN=C(NHAr)(2) (sym = symmetrical; Ar = 2-MeC6H4 (LH22-tolyl), 2-(MeO)C6H4 (LH22-anisyl), 4-MeC6H4 (LH24-tolyl), 2,5-Me2C6H3 (LH22,5-xylyl), and 2,6-Me2C6H3 (LH22,6-xylyl)) in toluene under reflux condition for 3 h afforded cis- or trans-Cl2Pt(S(O)Me-2)(ArN=C(NHAr)(2))] (Ar = 2-MeC6H4 (1), 2-(MeO)C6H4 (2), 4-MeC6H4 (3), 2,5-h Me2C6H3 (4), and 2,6-Me2C6H3 (5), respectively) in 83-96% yield. Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of LH22-tolyl and LH24-tolyl in the presence of 1 equiv of NaOAc in methanol under reflux condition for 3 h afforded acetate-substituted products, cis-(AcO)ClPt(S(O)Me-2)(ArN=C(NHAr)(2))] (Ar = 2-MeC6H4 (6) and 4-MeC6H4 (7)) in 83% and 84% yields, respectively. Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of LH22-anisyl and LH22-tolyl in the presence of 1 equiv of NaOAc in methanol under reflux condition for 3 and 12 h afforded six-membered C,N] platinacycles, Pt{kappa(2)(C,N)-C6H3R-3(NHC(NHAr)(=NAr))-2}Cl(S(O)Me-2)] (Ar = 2-RC6H4; R = OMe (8) and Me (9)), in 92% and 79% yields, respectively. The new complexes have been characterized by analytical and spectroscopic techniques, and further the molecular structures of 1, 2, 4, 5, 6, and 8 have been determined by single-crystal X-ray diffraction. The platinum atom in 1, 4, and 5 exhibited the trans configuration, while that in 2, 6, and 8 exhibited the cis configuration. Complex 6 is shown to be the precursor for 9, and the former is suggested to transform to the latter possibly via an intramolecular C-H activation followed by elimination of AcOH. The solution behavior of new complexes has been studied by multinuclear NMR (H-1, Pt-195, and C-13) spectroscopy. The new complexes exist exclusively as a single isomer (trans (1 and 5) and cis (6 and 7)), a mixture of cis and trans isomers with the former isomer being predominant in the case of 2 and the latter isomer being predominant in the case of 3. Complex 5 in the trans form revealed the presence of one isomer at 0.007 mM concentration and two isomers in about 1.00:0.12 ratio at 0.154 mM concentration as revealed by H-1 NMR spectroscopy, and this has been ascribed to the restricted Pt-S bond rotation at higher concentration. Platinacycle 8 exists as one isomer, while 9 exists as a mixture of seven isomers in solution. The influence of steric factor, pi-acceptor property of the guanidine, subtle solid-state packing forces upon the configuration of the platinum atom, and the number of isomers in solution have been outlined. Factors that accelerate or slow down the cycloplatination reaction, the role of NaOAc, and a plausible mechanism of this reaction have been discussed.
Resumo:
Phosphorylation of amines, alcohols, and sulfoximines are accomplished using molecular iodine as a catalyst and H2O2 as the sole oxidant under mild reaction conditions. This method provides an easy route for synthesizing a variety of phosphoramidates, phosphorus triesters and sulfoximine-derived phosphoramidates which are of biological importance.
Resumo:
The first organocatalytic asymmetric reaction of 3-isothiocyanatooxindoles with nitro olefins has been developed by using a cinchonidine-derived bifunctional catalyst. The resulting products, highly functionalized 3,2-pyrrolidinyl-substituted spirooxindole derivatives, were obtained in high yields with good diastereo- and enantioselectivities (up to dr >20:1 and er = 96:4). This Michael addition/cyclization cascade reaction employs monosubstituted nitro olefins and complements the Zn-II-catalyzed variant, which is only applicable to disubstituted nitro olefins.