957 resultados para reaction mechanism(Chemistry)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-ignition tests of a model scramjet combustor were conducted by using parallel sonic injection of gaseous hydrogen from the base of a blade-like strut into a supersonic vitiated airstream. The range of stagnation pressure and temperature studied varied from 1.0 to 4.5 MPa and from 1300 to 2200 K, respectively. Experimental results show that the self-ignition limit, in terms of either global or local quantities of pressure and temperature, exhibits a nonmonotonic behavior resembling the classical homogeneous explosion limit of the hydrogen-oxygen system. Specifically, for a given temperature, increasing pressure from a low value can render a nonignitable mixture to first become ignitable, then nonignitable again, This correspondence shows that, despite the globally supersonic nonpremixed configuration studied herein, ignition is strongly influenced by the intricate chemical reaction mechanism and thereby exhibits the homogeneous explosion character. Consequently, self-ignition criteria based on a global reaction rate approximating the complex chemistry are inadequate. An auxiliary computational study on counterflow ignition was also conducted to systematically investigate the contamination effects of vitiated air. Results indicate that the net contamination effects for the present experimental data are expected to be substantially smaller than contributions from the individual contamination species because of the counterbalancing influences of the H2O-inhibition and NO-promotion reactions in effecting ignition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Motivated by needs in molecular diagnostics and advances in microfabrication, researchers started to seek help from microfluidic technology, as it provides approaches to achieve high throughput, high sensitivity, and high resolution. One strategy applied in microfluidics to fulfill such requirements is to convert continuous analog signal into digitalized signal. One most commonly used example for this conversion is digital PCR, where by counting the number of reacted compartments (triggered by the presence of the target entity) out of the total number of compartments, one could use Poisson statistics to calculate the amount of input target.

However, there are still problems to be solved and assumptions to be validated before the technology is widely employed. In this dissertation, the digital quantification strategy has been examined from two angles: efficiency and robustness. The former is a critical factor for ensuring the accuracy of absolute quantification methods, and the latter is the premise for such technology to be practically implemented in diagnosis beyond the laboratory. The two angles are further framed into a “fate” and “rate” determination scheme, where the influence of different parameters is attributed to fate determination step or rate determination step. In this discussion, microfluidic platforms have been used to understand reaction mechanism at single molecule level. Although the discussion raises more challenges for digital assay development, it brings the problem to the attention of the scientific community for the first time.

This dissertation also contributes towards developing POC test in limited resource settings. On one hand, it adds ease of access to the tests by incorporating massively producible, low cost plastic material and by integrating new features that allow instant result acquisition and result feedback. On the other hand, it explores new isothermal chemistry and new strategies to address important global health concerns such as cyctatin C quantification, HIV/HCV detection and treatment monitoring as well as HCV genotyping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study has been made of the reaction mechanism of a model system for enzymatic hydroxylation. The results of a kinetic study of the hydroxylation of 2-hydroxyazobenzene derivatives by cupric ion and hydrogen peroxide are presented. An investigation of kinetic orders indicates that hydroxylation proceeds by way of a coordinated intermediate complex consisting of cupric ion and the mono anions of 2-hydroxyazobenzene and hydrogen peroxide. Studies with deuterated substrate showed the absence of a primary kinetic isotope effect and no evidence of an NIH shift. The effect of substituents on the formation of intermediate complexes and the overall rate of hydroxylation was studied quantitatively in aqueous solution. The combined results indicate that the hydroxylation step is only slightly influenced by ring substitution. The substituent effect is interpreted in terms of reaction by a radical path or a concerted mechanism in which the formation of ionic intermediates is avoided. The reaction mechanism is discussed as a model for enzymatic hydroxylation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reactions produced by the He3 bombardment of the He3 have been investigated for bombarding energies from 1 to 20 MeV using a tandem Van de Graaff accelerator. Proton spectra from the three-body reaction He3(He3, 2p)He4 have been measured with a counter telescope at 13 angles for 9 bombarding energies between 3 and 18 MeV. The results are compared with a model for the reaction which includes a strong p-He4 final-state interaction. Alpha-particle spectra have been obtained at 12 and 18 MeV for forward angles with a magnetic spectrometer. These spectra indicate a strongly forward-peaked mechanism involving the 1S0 p-p interaction in addition to the p-He4 interaction. Measurements of p-He4 and p-p coincidence spectra at 10 MeV confirm these features of the reaction mechanism. Deuteron spectra from the reaction of He3(He3, d)pHe3 have been measured at 18 MeV. A triton spectrum from the reaction He3(He3, t)3p at 20 MeV and 40 is interpreted in terms of a sequential decay through an excited state of the alpha particle at 20.0 MeV. No effects are observed which would indicate an interaction in the residual (3p) system. Below 3 MeV the He3(He3, 2p)He4 reaction mechanism is observed to be changing and further measurements are suggested in view of the importance of this reaction in stellar interiors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An increasin g interest in biofuel applications in modern engines requires a better understanding of biodiesel combustion behaviour. Many numerical studies have been carried out on unsteady combustion of biodiesel in situations similar to diesel engines, but very few studies have been done on the steady combustion of biodiesel in situations similar to a gas turbine combustor environment. The study of biodiesel spray combustion in gas turbine applications is of special interest due to the possible use of biodiesel in the power generation and aviation industries. In modelling spray combustion, an accurate representation of the physical properties of the fuel is a first important step, since spray formation is largely influenced by fuel properties such as viscosity, density, surface tension and vapour pressure. In the present work, a calculated biodiesel properties database based on the measured composition of Fatty Acid Methyl Esters (FAME) has been implemented in a multi-dimensional Computational Fluid Dynamics (CFD) spray simulation code. Simulations of non-reacting and reacting atmospheric-pressure sprays of both diesel and biodiesel have been carried out using a spray burner configuration for which experimental data is available. A pre-defined droplet size probability density function (pdf) has been implemented together with droplet dynamics based on phase Doppler anemometry (PDA) measurements in the near-nozzle region. The gas phase boundary condition for the reacting spray cases is similar to that of the experiment which employs a plain air-blast atomiser and a straight-vane axial swirler for flame stabilisation. A reaction mechanism for heptane has been used to represent the chemistry for both diesel and biodiesel. Simulated flame heights, spray characteristics and gas phase velocities have been found to compare well with the experimental results. In the reacting spray cases, biodiesel shows a smaller mean droplet size compared to that of diesel at a constant fuel mass flow rate. A lack of sensitivity towards different fuel properties has been observed based on the non-reacting spray simulations, which indicates a need for improved models of secondary breakup. By comparing the results of the non-reacting and reacting spray simulations, an improvement in the complexity of the physical modelling is achieved which is necessary in the understanding of the complex physical processes involved in spray combustion simulation. Copyright © 2012 SAE International.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study systematically the average property of fragmentation reaction and momentum dissipation induced by halo-nuclei in intermediate energy heavy ion collisions for different colliding systems and different beam energies within the isospin dependent quantum molecular dynamics model (IQMD). This study is based on the extended halo-nucleus density distributions, which indicates the average property of loosely inner halo nucleus structure, because the interaction potential and in-medium nucleon-nucleon cross section in IQMD model depend on the density distribution. In order to study the average properties of fragmentation reaction and momentum dissipation induced by halo-nuclei we also compare the results for the halo-nuclear colliding systems with those for corresponding stable colliding systems with same mass under the same incident channel condition. We find that the effect of extended halo density distribution on the fragment multiplicity and nuclear stopping (momentum dissipation) are important for the different beam energies and different colliding systems. For example the extended halo density distributions increase the fragment multiplicity but decrease the nuclear stopping for all of incident channel conditions in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the average property of the isospin effect of reaction induced by halo-neutron nuclei He-8 and He-10 in the intermediate energy heavy ion collisions using the isospin-dependent quantum molecular dynamics model (IQMD). This study is based on the extended neutron density distribution for the halo-neutron nuclei, which includes the average property of the isospin effect-of reaction mechanism and loose inner structure. The extended neutron density distribution brings an important isospin. effect into the average property of reaction mechanism because the interaction potential and nucleon-nucleon(N-N) cross section in IQMD model depend sensitively on the density distribution of colliding system. In order to see clearly the average properties of reaction mechanism induced by halo-neutron nuclei we also compare the results for the neutron-halo colliding systems with those for the corresponding stable colliding systems under the same incident channel condition. We found that the extended density distribution for the neutron-halo projectile brings an important isospin effect to the reaction mechanism, which leads to the decrease of nuclear stopping R, yet induces obvious increase of the neutron-proton ratio of nucleon emissions and isospin fractionation ratio for all beam energies studied in this work, compared to the corresponding stable colliding system. In this case, nuclear stopping, the neutron-proton ratio of nucleon emissions and isospin fractionation ratio induced by halo-neutron nuclei can be used as possible probes for studying the average property of the isospin effect of reaction mechanism and extracting the information of symmetry potential and in-medium N-N cross section by the neutron-halo nuclei in heavy ion collisions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In terms of the isospin-dependent quantum molecular dynamics model (IQMD), important isospin effect in the halo-neutron nucleus induced reaction mechanism is. investigated, and consequently, the symmetrical potential form is extracted in the intermediate energy heavy ion collision. Because the interactive potential and in-medium nucleon-nucleon (N-N) cross section in the IQMD model sensitively depend on the density distribution of the colliding system, this type of study is much more based on the extended density distribution with a looser inner nuclear structure of the halo-neutron nucleus. Such a density distribution includes averaged characteristics of the isospin effect of the reaction mechanism and the looser inner nuclear structure. In order to understand clearly the isospin effect of the halo-neutron nucleus induced reaction mechanism, the effects caused by the neutron-halo nucleus and by the stable nucleus with the same mass are compared under the same condition of the incident channel. It is found that in the concerned beam energy region, the ratio of the emitted neutrons and protons and the ratio of the isospin fractionations in the neutron-halo nucleus case are considerably larger than those in the stable nucleus case. Therefore, the information of the symmetry potential in the heavy ion collision can be extracted through such a procedure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recoiled proton tagged knockout reaction experiments were carried-out for He-8 at 82.5 MeV/u in RIKEN and for He-6 at 65 MeV/u in Lanzhou. The very preliminary results for the distinguish of the reaction mechanism are presented and compared to the kinematics calculation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some G-quadruplex DNA aptamers have been found to strongly bind hemin to form DNAzymes with peroxidase-like activity. To help determine the most suitable DNAzymes and to understand how they work, five previously reported G-quadruplex aptamers were compared for their binding affinity and then the potential catalytic mechanism of their corresponding hemin-G-quadruplex DNAzymes was explored. Among these aptamers, a G-quadruplex named AGRO100 was shown to possess the highest hemin-binding affinity and the best DNAzyme function. This means that AGRO100 is the most ideal candidate for DNAzyme-based analysis. Furthermore, we found the peroxidase-like activity of DNAzyme to be primarily dependent on the concentration of H2O2 and independent of that of the peroxidase substrate (that is, 2,2-azino-bis(3-ethytbenzothiazoline-6-sulfonic acid)diammonium salt). Accordingly, a reaction mechanism for DNAzyme-catalyzed peroxidation is proposed. This study provides new insights into the G-quadruplex-based DNAzymes and will help us to further extend their applications in the analytical field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intramolecular amide hydrolysis of N-methylmaleamic acid is revisited at the B3LYP/6-311G(2df,p)//B3LYP/6-31G(d,p)+ZVPE level, including solvent effects at the CPCM-B3LYP/6-311G(2df,p)//Onsager-B3LYP/6-31G(d,p)+ZPVE level. The concerted reaction mechanism is energetically favorable over stepwise reaction mechanisms in both the gas phase and solution. The calculated reaction barriers are significantly lower in solution than in the gas phase. In addition, it is concluded that the substituents of the four N-methylmaleamic acid derivatives considered herein have a significant effect on the gas-phase reaction barriers but a smaller, or little, effect on the barriers in solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reaction mechanism of the Beckmann rearrangement over B2O3/gamma-Al2O3 and TS-1 in the gas phase has been investigated by isotope labeling approach. The isotopic labeled products were measured by mass spectrometry method. By exchanging oxygen with H, 180 in the rearrangement step, it was found that the exchange reaction between cyclohexanone oxime and (H2O)-O-18 over B2O3/-gamma-Al2O3 and TS-1 could only be carried out in some extent. It suggested that the dissociation of nitrilium, over solid acids be not completely free as the classical mechanism. A concept of the dissociation degree (alpha) that is defined as the ratio of the dissociated intermediate nitrilium to the total intermediate nitrilium has been proposed. By fitting the experimental values with the calculation equation of isotopic labeled products, it is obtained that a values for B2O3/-gamma-Al2O3 and TS-1 are 0.199 and 0.806 at the reaction conditions, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this work is to study the effect of Sr substitution on the redox properties and catalytic activity of La2-xSrxNiO4 (x = 0.0-1.2) for NO decomposition. Results suggest that the x = 0.6 sample shows the highest activity. The characterization (TPD, TPR, etc.) of samples indicates that the x = 0.6 sample possesses suitable abilities in both oxidation and reduction, which facilitates the proceeding of oxygen desorption and NO adsorption. At temperature below 700 degrees C, the oxygen desorption is difficult, and is the rate-determining step of NO decomposition. With the increase of reaction temperature (T > 700 degrees C), the oxygen desorption is favorable and, the active adsorption of NO on the active site (NO + V-o + Ni2+ -> NO--Ni3+) turns out to be the rate-determining step. The existence of oxygen vacancy is the prerequisite condition for NO decomposition, but its quantity does not relate much to the activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Graft copolymerization in the molten state is of fundamental importance as a probe of chemical modification and reactive compatibilization. However, few grafting kinetic studies on reactive extrusion have been carried out because of the inherent difficulties, as expected. In this work, we have studied chain propagation kinetics on melt grafting using pre-irradiated linear low density polyethylene (LLDPE) and three monomers, acrylic acid (AA), methacrylic acid (MAA), and methyl methacrylate (MMA), as the model system. We measured the apparent chain propagation rate coefficients of grafting (k(p,g)) and homopolymerization (k(p,h)) at an initial stage for the melt grafting by FT-IR spectroscopy and electron spin resonance spectroscopy. It was observed that the convective mixing affected the rate coefficients. The magnitude of k(p,h) and k(p,g) were in the same order, but k(p,h) was slightly larger than k(p,g) The k(p,g) of the three grafting systems increased in the order: LLDPE/MMA < LLDPE/MAA < LLDPE/AA. These results are explained in terms of phase separation, solubility, and inherent reactivity of the monomer.