981 resultados para random regression
Resumo:
The objective of this study was to estimate variance components and genetic parameters for accumulated 305-day milk yield (MY305) over multiple ages, from 24 to 120 months of age, applying random regression (RRM), repeatability (REP) and multi-trait (MT) models. A total of 4472 lactation records from 1882 buffaloes of the Murrah breed were utilized. The contemporary group (herd-year-calving season) and number of milkings (two levels) were considered as fixed effects in all models. For REP and RRM, additive genetic, permanent environmental and residual effects were included as random effects. MT considered the same random effects as did REP and RRM with the exception of permanent environmental effect. Residual variances were modeled by a step function with 1, 4, and 6 classes. The heritabilities estimated with RRM increased with age, ranging from 0.19 to 0.34, and were slightly higher than that obtained with the REP model. For the MT model, heritability estimates ranged from 0.20 (37 months of age) to 0.32 (94 months of age). The genetic correlation estimates for MY305 obtained by RRM (L23.res4) and MT models were very similar, and varied from 0.77 to 0.99 and from 0.77 to 0.99, respectively. The rank correlation between breeding values for MY305 at different ages predicted by REP, MT, and RRM were high. It seems that a linear and quadratic Legendre polynomial to model the additive genetic and animal permanent environmental effects, respectively, may be sufficient to explain more parsimoniously the changes in MY305 genetic variation with age.
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A total of 3.035 lactations of Holstein cows from four farms in the Southeast, to check the influence of data structure of milk yield on the genetic parameters. Four dataset with different structures were tested, weekly controls (CW) with 122.842 controls, monthly controls (CM) 30.883, bimonthly controls (CB) with 15,837 and quarterly controls (CQ) with 12,702. The random regression model was used and was considered as random additive genetic and permanent environment effects, fixed effects of the contemporary groups (herd-year-month of test-day) and age of cow (linear and quadratic effects). Heritability estimates showed similar trends among the data files analyzed, with the greatest similarity between dataset CS, CM and CB. The dataset submitted all the CB estimates of genetic parameters analyzed with the same trend and similar magnitude to the CS and CM dataset, allowing the claim that there was no influence of the data structure on estimates of covariance components for the dataset CS, CM and CB. Thus, milk recording could be accomplished in a CB structure.
Resumo:
Weight records of Brazilian Nelore cattle, from birth to 630 d of age, recorded every 3 mo, were analyzed using random regression models. Independent variables were Legendre polynomials of age at recording. The model of analysis included contemporary groups as fixed effects and age of dam as a linear and quadratic covariable. Mean trends were modeled through a cubic regression on orthogonal polynomials of age. Up to four sets of random regression coefficients were fitted for animals' direct and maternal, additive genetic, and permanent environmental effects. Changes in measurement error variances with age were modeled through a variance function. Orders of polynomial fit from three to six were considered, resulting in up to 77 parameters to be estimated. Models fitting random regressions modeled the pattern of variances in the data adequately, with estimates similar to those from corresponding univariate analysis. Direct heritability estimates decreased after birth and tended to be lowest at ages at which maternal effect estimates tended to be highest. Maternal heritability estimates increased after birth to a peak around 110 to 120 d of age and decreased thereafter. Additive genetic direct correlation estimates between weights at standard ages (birth, weaning, yearling, and final weight) were moderate to high and maternal genetic and environmental correlations were consistently high.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objectives of the present study were to determine if variance components of calving intervals varied with age at calving and if considering calving intervals as a longitudinal trait would be a useful approach for fertility analysis of Zebu dairy herds. With these purposes, calving records from females born from 1940 to 2006 in a Guzerat dairy subpopulation in Brazil were analyzed. The fixed effects of contemporary groups, formed by year and farm at birth or at calving, and the regressions of age at calving, equivalent inbreeding coefficient and day of the year on the studied traits were considered in the statistical models. In one approach, calving intervals (Cl) were analyzed as a single trait, by fitting a statistical model on which both animal and permanent environment effects were adjusted for the effect of age at calving by random regression. In a second approach, a four-trait analysis was conducted, including age at first calving (AFC) and three different female categories for the calving intervals: first calving females; young females (less than 80 months old, but not first calving); or mature females (80 months old or more). Finally, a two-trait analysis was performed, also including AFC and Cl, but calving intervals were regarded as a single trait in a repeatability model. Additionally, the ranking of sires was compared among approaches. Calving intervals decreased with age until females were about 80 months old, remaining nearly constant after that age. A quasi-linear increase of 11.5 days on the calving intervals was observed for each 10% increase in the female's equivalent inbreeding coefficient. The heritability of AFC was 0.37. For Cl. the genetic-phenotypic variance ratios ranged from 0.064 to 0.141, depending on the approach and on ages at calving. Differences among genetic variance components for calving intervals were observed along the animal's lifetime. Those differences confirmed the longitudinal aspect of that trait, indicating the importance of such consideration when accessing fertility of Zebu dairy females, especially in situations where the available information relies on their calving intervals. Spearman rank correlations among approaches ranged from 0.90 to 0.95, and changes observed in the ranking of sires suggested that the genetic progress of the population could be affected by the approach chosen for the analysis of calving intervals. (C) 2012 Elsevier ay. All rights reserved.
Resumo:
The objective of this study was to describe the VNTR polymorphism of the mucin 1 gene (MUC1) in three Nelore lines selected for yearling weight to determine whether allele and genotype frequencies of this polymorphism were affected by selection for growth. In addition, the effects of the polymorphism on growth and carcass traits were evaluated. Birth, weaning and yearling weights, rump height, Longissimus muscle area, backfat thickness, and rump fat thickness, were analyzed. A total of 295 Nelore heifers from the Beef Cattle Research Center, Instituto de Zootecnia de Sertozinho, were used, including 41 of the control line, 102 of the selection line and 152 of the traditional. The selection and traditional lines comprise animals selected for higher yearling weight, whereas control line animals are selected for yearling weight close to the average. Five alleles were identified, with allele 1 being the most frequent in the three lines, especially in the lines selected for higher means for yearling weight. Heterozygosity was significantly higher in the control line. Association analyses showed significant effects of allele 1 on birth weight and weaning weight while the allele 3 exert significant effects on yearling weight and back fat thickness. Despite these findings, application of this marker to marker-assisted selection requires more consistent results based on the genotyping of a larger number of animals in order to increase the accuracy of the statistical analyses.
Resumo:
A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits.
Resumo:
In this paper, reanalysis fields from the ECMWF have been statistically downscaled to predict from large-scale atmospheric fields, surface moisture flux and daily precipitation at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain) during the 1961-2001 period. Three types of downscaling models have been built: (i) analogues, (ii) analogues followed by random forests and (iii) analogues followed by multiple linear regression. The inputs consist of data (predictor fields) taken from the ERA-40 reanalysis. The predicted fields are precipitation and surface moisture flux as measured at the two observatories. With the aim to reduce the dimensionality of the problem, the ERA-40 fields have been decomposed using empirical orthogonal functions. Available daily data has been divided into two parts: a training period used to find a group of about 300 analogues to build the downscaling model (1961-1996) and a test period (19972001), where models' performance has been assessed using independent data. In the case of surface moisture flux, the models based on analogues followed by random forests do not clearly outperform those built on analogues plus multiple linear regression, while simple averages calculated from the nearest analogues found in the training period, yielded only slightly worse results. In the case of precipitation, the three types of model performed equally. These results suggest that most of the models' downscaling capabilities can be attributed to the analogues-calculation stage.
Resumo:
In this paper, we propose a fully automatic, robust approach for segmenting proximal femur in conventional X-ray images. Our method is based on hierarchical landmark detection by random forest regression, where the detection results of 22 global landmarks are used to do the spatial normalization, and the detection results of the 59 local landmarks serve as the image cue for instantiation of a statistical shape model of the proximal femur. To detect landmarks in both levels, we use multi-resolution HoG (Histogram of Oriented Gradients) as features which can achieve better accuracy and robustness. The efficacy of the present method is demonstrated by experiments conducted on 150 clinical x-ray images. It was found that the present method could achieve an average point-to-curve error of 2.0 mm and that the present method was robust to low image contrast, noise and occlusions caused by implants.
Resumo:
Knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic and robust approach for landmarking and segmentation of both pelvis and femur in a conventional AP X-ray. Our approach is based on random forest regression and hierarchical sparse shape composition. Experiments conducted on 436 clinical AP pelvis x-rays show that our approach achieves an average point-to-curve error around 1.3 mm for femur and 2.2 mm for pelvis, both with success rates around 98%. Compared to existing methods, our approach exhibits better performance in both the robustness and the accuracy.