950 resultados para pyrene fluorescence spectroscopy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of N-isopropylacrylamide (NIPAM)-acrylic acid-ethyl methacrylate terpolymers with varied monomer compositions was prepared by radical polymerization. The solution behavior of these polymers was studied in dilute aqueous solution using spectrophotometry, fluorescence spectroscopy and high-sensitivity differential scanning calorimetry. The results obtained revealed that the lower critical solution temperatures depend strongly on the copolymer composition, solution pH and ionic strength. At a high pH, the ionization of acrylic acid (AA) units leads to an increase in solution cloud points (T-c). Solutions of polymers containing 10% or less of AA display a constant T-c for pH above 5.5, with 15% there is a continuous increase in T-c with pH and, for higher AA contents, no clouding was observed within the studied temperature range. Fluorescence probe studies were conducted by following the I (1)/I (3) ratio of pyrene vibronic bands and the emission of anilinonaphtalene sulfonic acid, sodium salt (ANS), both approaches revealing the existence of hydrophobic domains for polymers with higher ethyl methacrylate content at temperatures lower than T-c, suggesting some extent of aggregation and/or a coil-to-globule transition. Scanning calorimetry measurements showed an endothermic transition at temperatures agreeing with the previously detected cloud points. Moreover, the transition curves became broader and with a smaller transition enthalpy, as both the AA content and the solution pH were increased. These broader transitions were interpreted to be the result of a wider molecular distribution upon polymer ionization, hence, displaying varied solution properties. The decrease in transition enthalpy was rationalized as a consequence of reminiscent hydration of NIPAM units, even after phase separation, owing to the presence of electric charges along the polymer chain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Er3+:LiYF4 single crystal has been studied by absorption and fluorescence spectroscopy in the IR-visible-UV (0-44000 cm-1) region from 4.2 K to room temperature. Polarized spectra were recorded in order to assign numerous Stark levels of electronic transitions mentioned but not attributed before in the related literature and to discuss the irreducible representations (irreps) of the 4I15/2 sublevels. A parametric hamiltonian, including free ion (Eν, α, β, γ, Tλ, ζ, Mk and Pi) and crystal field parameters (B2 0, B4 0, B4 4, B6 0 and B6 4) in an approximate D2d symmetry for the rare earth site in this scheelite type structure, was used to simulate 109 energy positions of the Er ion with a r.m.s. standard deviation of 14.6 cm-1. A comparison with previously published results for Nd3+ in the same matrix is done. © 1998 Elsevier Science S.A.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SUM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SUM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SUM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

X-ray laser fluorescence spectroscopy of the 2s-2p transition in Li-like ions is promising to become a widely applicable tool to provide information on the nuclear charge radii of stable and radioactive isotopes. For performing such experiments at the Experimental Storage Ring ESR, and the future NESR within the FAIR Project, a grazing incidence pumped (GRIP) x-ray laser (XRL) was set up at GSI Darmstadt using PHELIX (Petawatt High Energy Laser for heavy Ions eXperiments). The experiments demonstrated that lasing using the GRIP geometry could be achieved with relatively low pump energy, a prerequisite for higher repetition rate. In the first chapter the need of a plasma XRL is motivated and a short history of the plasma XRL is presented. The distinctive characteristic of the GRIP method is the controlled deposition of the pump laser energy into the desired plasma density region. While up to now the analysis performed were mostly concerned with the plasma density at the turning point of the main pump pulse, in this thesis it is demonstrated that also the energy deposition is significantly modified for the GRIP method, being sensitive in different ways to a large number of parameters. In the second chapter, the theoretical description of the plasma evolution, active medium and XRL emission properties are reviewed. In addition an innovative analysis of the laser absorption in plasma which includes an inverse Bremsstrahlung (IB) correction factor is presented. The third chapter gives an overview of the experimental set-up and diagnostics, providing an analytical formula for the average and instantaneous traveling wave speed generated with a tilted, on-axis spherical mirror, the only focusing system used up to now in GRIP XRL. The fourth chapter describes the experimental optimization and results. The emphasis is on the effect of the incidence angle of the main pump pulse on the absorption in plasma and on output and gain in different lasing lines. This is compared to the theoretical results for two different incidence angles. Significant corrections for the temperature evolution during the main pump pulse due to the incidence angle are demonstrated in comparison to a simple analytical model which does not take into account the pumping geometry. A much better agreement is reached by the model developed in this thesis. An interesting result is also the appearance of a central dip in the spatially resolved keV emission which was observed in the XRL experiments for the first time and correlates well with previous near field imaging and plasma density profile measurements. In the conclusion also an outlook to the generation of shorter wavelength XRL’s is given.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rapid and sensitive detection of chemical and biological analytes becomes increasingly important in areas such as medical diagnostics, food control and environmental monitoring. Optical biosensors based on surface plasmon resonance (SPR) and optical waveguide spectroscopy have been extensively pushed forward in these fields. In this study, we combine SPR, surface plasmon-enhanced fluorescence spectroscopy (SPFS) and optical waveguide spectroscopy with hydrogel thin film for highly sensitive detection of molecular analytes.rnrnA novel biosensor based on SPFS which was advanced through the excitation of long range surface plasmons (LRSPs) is reported in this study. LRSPs are special surface plasmon waves propagating along thin metal films with orders of magnitude higher electromagnetic field intensity and lower damping than conventional SPs. Therefore, their excitation on the sensor surface provides further increased fluorescence signal. An inhibition immunoassay based on LRSP-enhanced fluorescence spectroscopy (LRSP-FS) was developed for the detection of aflatoxin M1 (AFM1) in milk. The biosensor allowed for the detection of AFM1 in milk at concentrations as low as 0.6 pg mL-1, which is about two orders of magnitude lower than the maximum AFM1 residue level in milk stipulated by the European Commission legislation.rnrnIn addition, LRSPs probe the medium adjacent to the metallic surface with more extended evanescent field than regular SPs. Therefore, three-dimensional binding matrices with up to micrometer thickness have been proposed for the immobilization of biomolecular recognition elements with large surface density that allows to exploit the whole evanescent field of LRSP. A photocrosslinkable carboxymethyl dextran (PCDM) hydrogel thin film is used as a binding matrix, and it is applied for the detection of free prostate specific antigen (f-PSA) based on the LRSP-FS and sandwich immunoassay. We show that this approach allows for the detection of f-PSA at low femto-molar range, which is approximately four orders of magnitude lower than that for direct detection of f-PSA based on the monitoring of binding-induced refractive index changes.rnrnHowever, a three dimensional hydrogel binding matrix with micrometer thickness can also serve as an optical waveguide. Based on the measurement of binding-induced refractive index changes, a hydrogel optical waveguide spectroscopy (HOWS) is reported for a label-free biosensor. This biosensor is implemented by using a SPR optical setup in which a carboxylated poly(N-isoproprylacrylamide) (PNIPAAm) hydrogel film is attached on a metallic surface and modified by protein catcher molecules. Compared to regular SPR biosensor with thiol self-assembled monolayer (SAM), HOWS provides an order of magnitude improved resolution in the refractive index measurements and enlarged binding capacity owing to its low damping and large swelling ratio, respectively. A model immunoassay experiment revealed that HOWS allowed detection of IgG molecules with a 10 pM limit of detection (LOD) that was five-fold lower than that achieved for SPR with thiol SAM. For the high capacity hydrogel matrix, the affinity binding was mass transport limited.rnrnThe mass transport of target molecules to the sensor surface can play as critical a role as the chemical reaction itself. In order to overcome the diffusion-limited mass transfer, magnetic iron oxide nanoparticles were employed. The magnetic nanoparticles (MNPs) can serve both as labels providing enhancement of the refractive index changes, and “vehicles” for rapidly delivering the analytes from sample solution to an SPR sensor surface with a gradient magnetic field. A model sandwich assay for the detection of β human chorionic gonadotropin (βhCG) has been utilized on a gold sensor surface with metallic diffraction grating structure supporting the excitation of SPs. Various detection formats including a) direct detection, b) sandwich assay, c) MNPs immunoassay without and d) with applied magnetic field were compared. The results show that the highly-sensitive MNPs immunoassay improves the LOD on the detection of βhCG by a factor of 5 orders of magnitude with respect to the direct detection.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Advanced optical biosensor platforms exploiting long range surface plasmons (LRSPs) and responsive N-isopropylacrylamide (NIPAAm) hydrogel binding matrix for the detection of protein and bacterial pathogen analytes were carried out. LRSPs are optical waves that originate from coupling of surface plasmons on the opposite sites of a thin metallic film embedded between two dielectrics with similar refractive indices. LRSPs exhibit orders of magnitude lower damping and more extended profile of field compared to regular surface plasmons (SPs). Their excitation is accompanied with narrow resonance and provides stronger enhancement of electromagnetic field intensity that can advance the sensitivity of surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence spectroscopy (SPFS) biosensors. Firstly, we investigated thin gold layers deposited on fluoropolymer surface for the excitation of LRSPs. The study indicates that the morphological, optical and electrical properties of gold film can be changed by the surface energy of fluoropolymer and affect the performance of a SPFS biosensor. A photo-crosslinkable NIPAAm hydrogel was grafted to the sensor surface in order to serve as a binding matrix. It was modified with bio-recognition elements (BREs) via amine coupling chemistry and offered the advantage of large binding capacity, stimuli responsive properties and good biocompatibility. Through experimental observations supported by numerical simulations describing diffusion mass transfer and affinity binding of target molecules in the hydrogel, the hydrogel binding matrix thickness, concentration of BREs and the profile of the probing evanescent field was optimized. Hydrogel with a up to micrometer thickness was shown to support additional hydrogel optical waveguide (HOW) mode which was employed for probing affinity binding events in the gel by means of refractometric and fluorescence measurements. These schemes allow to reach limits of detection (LODs) at picomolar and femtomolar levels, respectively. Besides hydrogel based experiments for detection of molecular analytes, long range surface plasmon-enhanced fluorescence spectroscopy (LRSP-FS) was employed for detection of bacterial pathogens. The influence of capture efficiency of bacteria on surfaces and the profile of the probing field on sensor response were investigated. The potential of LRSP-FS with extended evanescent field is demonstrated for detection of pathogenic E. coli O157:H7 on sandwich immunoassays . LOD as low as 6 cfu mL-1 with a detection time of 40 minutes was achieved.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis reports on the experimental realization of nanofiber-based spectroscopy of organic molecules. The light guided by subwavelength diameter optical nanfibers exhibits a pronounced evanescent field surrounding the fiber which yields high excitation and emission collection efficiencies for molecules on or near the fiber surface.rnThe optical nanofibers used for the experiments presented in this thesis are realized as thernsub-wavelength diameter waist of a tapered optical fiber (TOF). The efficient transfer of thernlight from the nanofiber waist to the unprocessed part of the TOF depends critically on therngeometric shape of the TOF transitions which represent a nonuniformity of the TOF. Thisrnnonuniformity can cause losses due to coupling of the fundamental guided mode to otherrnmodes which are not guided by the taper over its whole length. In order to quantify the lossrnfrom the fundamental mode due to tapering, I have solved the coupled local mode equationsrnin the approximation of weak guidance for the three layer system consisting of fiber core andrncladding as well as the surrounding vacuum or air, assuming the taper shape of the TOFsrnused for the experiments presented in this thesis. Moreover, I have empirically studied therninfluence of the TOF geometry on its transmission spectra and, based on the results, I haverndesigned a nanofiber-waist TOF with broadband transmission for experiments with organicrnmolecules.rnAs an experimental demonstration of the high sensitivity of nanofiber-based surface spectroscopy, I have performed various absorption and fluorescence spectroscopy measurements on the model system 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA). The measured homogeneous and inhomogeneous broadening of the spectra due to the interaction of the dielectric surface of the nanofiber with the surface-adsorbed molecules agrees well with the values theoretically expected and typical for molecules on surfaces. Furthermore, the self-absorption effects due to reasorption of the emitted fluorescence light by circumjacent surface-adsorbed molecules distributed along the fiber waist have been analyzed and quantified. With time-resolved measurements, the reorganization of PTCDA molecules to crystalline films and excimers can be observed and shown to be strongly catalyzed by the presence of water on the nanofiber surface. Moreover, the formation of charge-transfer complexes due to the interaction with localized surface defects has been studied. The collection efficiency of the molecular emission by the guided fiber mode has been determined by interlaced measurements of absorption and fluorescence spectra to be about 10% in one direction of the fiber.rnThe high emission collection efficiency makes optical nanofibers a well-suited tool for experiments with dye molecules embedded in small organic crystals. As a first experimental realization of this approach, terrylene-doped para-terphenyl crystals attached to the nanofiber-waist of a TOF have been studied at cryogenic temperatures via fluorescence and fluorescence excitation spectroscopy. The statistical fine structure of the fluorescence excitation spectrum for a specific sample has been observed and used to give an estimate of down to 9 molecules with center frequencies within one homogeneous width of the laser wavelength on average for large detunings from resonance. The homogeneous linewidth of the transition could be estimated to be about 190MHz at 4.5K.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxygen 1s excitation and ionization processes in the CO2 molecule have been studied with dispersed and non-dispersed fluorescence spectroscopy as well as with the vacuum ultraviolet (VUV) photon?photoion coincidence technique. The intensity of the neutral O emission line at 845 nm shows particular sensitivity to core-to-Rydberg excitations and core?valence double excitations, while shape resonances are suppressed. In contrast, the partial fluorescence yield in the wavelength window 300?650 nm and the excitation functions of selected O+ and C+ emission lines in the wavelength range 400?500 nm display all of the absorption features. The relative intensity of ionic emission in the visible range increases towards higher photon energies, which is attributed to O 1s shake-off photoionization. VUV photon?photoion coincidence spectra reveal major contributions from the C+ and O+ ions and a minor contribution from C2+. No conclusive changes in the intensity ratios among the different ions are observed above the O 1s threshold. The line shape of the VUV?O+ coincidence peak in the mass spectrum carries some information on the initial core excitation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary objective of this research has been to determine the potential of fluorescence spectroscopy as a method for analysis of surface deposition on contact lenses. In order to achieve this it was first necessary to ascertain whether fluorescence analysis would be able to detect and distinguish between protein and lipid deposited on a lens surface. In conjunction with this it was important to determine the specific excitation wavelengths at which these deposited species were detected with the greatest sensitivity. Experimental observations showed that an excitation wavelength of 360nm would detect lipid deposited on a lens surface, and an excitation wavelength of 280nm would detect and distinguish between protein and lipid deposited on a contact lens. It was also very important to determine whether clean unspoilt lenses showed significant levels of fluorescence themselves. Fluorescence spectra recorded from a variety of unworn contact lenses at excitation wavelengths of 360nm and 280nm indicated that most contact lens materials do not fluoresce themselves to any great extent. Following these initial experiments various clinically and laboratory based studies were performed using fluorescence spectroscopy as a method of analysing contact lens deposition levels. The clinically based studies enabled analysis of contact lenses with known wear backgrounds to be rapidly and individually analysed following discontinuation of wear. Deposition levels in the early stages of lens wear were determined for various lens materials. The effect of surfactant cleaning on deposition levels was also investigated. The laboratory based studies involved comparing some of the in vivo results with those of identical lenses that had been spoilt using an in vitro method. Finally, an examination of lysosyme migration into and out of stored ionic high water contact lenses was made.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fluorescence spectroscopy has recently become more common in clinical medicine. However, there are still many unresolved issues related to the methodology and implementation of instruments with this technology. In this study, we aimed to assess individual variability of fluorescence parameters of endogenous markers (NADH, FAD, etc.) measured by fluorescent spectroscopy (FS) in situ and to analyse the factors that lead to a significant scatter of results. Most studied fluorophores have an acceptable scatter of values (mostly up to 30%) for diagnostic purposes. Here we provide evidence that the level of blood volume in tissue impacts FS data with a significant inverse correlation. The distribution function of the fluorescence intensity and the fluorescent contrast coefficient values are a function of the normal distribution for most of the studied fluorophores and the redox ratio. The effects of various physiological (different content of skin melanin) and technical (characteristics of optical filters) factors on the measurement results were additionally studied.The data on the variability of the measurement results in FS should be considered when interpreting the diagnostic parameters, as well as when developing new algorithms for data processing and FS devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent decades, the rapid development of optical spectroscopy for tissue diagnosis has been indicative of its high clinical value. The goal of this research is to prove the feasibility of using diffuse reflectance spectroscopy and fluorescence spectroscopy to assess myocardial infarction (MI) in vivo. The proposed optical technique was designed to be an intra-operative guidance tool that can provide useful information about the condition of an infarct for surgeons and researchers. ^ In order to gain insight into the pathophysiological characteristics of an infarct, two novel spectral analysis algorithms were developed to interpret diffuse reflectance spectra. The algorithms were developed based on the unique absorption properties of hemoglobin for the purpose of retrieving regional hemoglobin oxygenation saturation and concentration data in tissue from diffuse reflectance spectra. The algorithms were evaluated and validated using simulated data and actual experimental data. ^ Finally, the hypothesis of the study was validated using a rabbit model of MI. The mechanism by which the MI was induced was the ligation of a major coronary artery of the left ventricle. Three to four weeks after the MI was induced, the extent of myocardial tissue injury and the evolution of the wound healing process were investigated using the proposed spectroscopic methodology as well as histology. The correlations between spectral alterations and histopathological features of the MI were analyzed statistically. ^ The results of this PhD study demonstrate the applicability of the proposed optical methodology for assessing myocardial tissue damage induced by MI in vivo. The results of the spectral analysis suggest that connective tissue proliferation induced by MI significantly alter the characteristics of diffuse reflectance and fluorescence spectra. The magnitudes of the alterations could be quantitatively related to the severity and extensiveness of connective tissue proliferation.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For children with intractable seizures, surgical removal of epileptic foci, if identifiable and feasible, can be an effective way to reduce or eliminate seizures. The success of this type of surgery strongly hinges upon the ability to identify and demarcate those epileptic foci. The ultimate goal of this research project is to develop an effective technology for detection of unique in vivo pathophysiological characteristics of epileptic cortex and, subsequently, to use this technology to guide epilepsy surgery intraoperatively. In this PhD dissertation the feasibility of using optical spectroscopy to identify uniquein vivo pathophysiological characteristics of epileptic cortex was evaluated and proven using the data collected from children undergoing epilepsy surgery. ^ In this first in vivo human study, static diffuse reflectance and fluorescence spectra were measured from the epileptic cortex, defined by intraoperative ECoG, and its surrounding tissue from pediatric patients undergoing epilepsy surgery. When feasible, biopsy samples were taken from the investigated sites for the subsequent histological analysis. Using the histological data as the gold standard, spectral data was analyzed with statistical tools. The results of the analysis show that static diffuse reflectance spectroscopy and its combination with static fluorescence spectroscopy can be used to effectively differentiate between epileptic cortex with histopathological abnormalities and normal cortex in vivo with a high degree of accuracy. ^ To maximize the efficiency of optical spectroscopy in detecting and localizing epileptic cortex intraoperatively, the static system was upgraded to investigate histopathological abnormalities deep within the epileptic cortex, as well as to detect unique temporal pathophysiological characteristics of epileptic cortex. Detection of deep abnormalities within the epileptic cortex prompted a redesign of the fiberoptic probe. A mechanical probe holder was also designed and constructed to maintain the probe contact pressure and contact point during the time dependent measurements. The dynamic diffuse reflectance spectroscopy system was used to characterize in vivo pediatric epileptic cortex. The results of the study show that some unique wavelength dependent temporal characteristics (e.g., multiple horizontal bands in the correlation coefficient map γ(λref = 800 nm, λcomp ,t)) can be found in the time dependent recordings of diffuse reflectance spectra from epileptic cortex defined by ECoG.^