956 resultados para proteolytic cleavage


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antigen recognition site of antibodies is composed of residues contributed by the variable domains of the heavy and light chain subunits (VL and VH domains). VL domains can catalyze peptide bond hydrolysis independent of VH domains (Mei S et al. J Biol Chem. 1991 Aug 25;266(24):15571-4). VH domains can bind antigens noncovalently independent of V L domains (Ward et al. Nature. 1989 Oct 12;341(6242):544-6). This dissertation describe the specific hydrolysis of fusion proteins containing the hepatitis C virus coat protein E2 by recombinant hybrid Abs composed of the heavy chain of a high affinity anti-E2 IgG1 paired with light chains expressing promiscuous catalytic activity. The proteolytic activity was evident from electrophoresis assays using recombinant E2 substrates containing glutathione S-transferase (E2-GST) or FLAG peptide (E2-FLAG) tags. The proteolytic reaction proceeded more rapidly in the presence of the hybrid IgG1 compared to the unpaired light chain, consistent with accelerated peptide bond hydrolysis due to noncovalent VH domain-E2 recognition. An active site-directed inhibitor of serine proteases inhibited the proteolytic activity of the hybrid IgG, indicating a serine protease mechanism. Binding studies confirmed that the hybrid IgG retained detectable noncovalent E2 recognition capability, although at a level smaller than the wildtype anti-E2 IgG. Immunoblotting of E2-FLAG treated with the hybrid IgG suggested a scissile bond within E2 located ∼11 kD from the N terminus of the protein. E2-GST was hydrolyzed by the hybrid IgG at peptide bonds located in the GST tag. The differing cleavage pattern of E2-FLAG and E2-GST can be explained by the split-site model of catalysis, in which conformational differences in the E2 fusion protein substrates position alternate peptide bonds in register with the antibody catalytic subsite despite a common noncovalent binding mechanism. This is the first proof-of principle that the catalytic activity of a light chain can be rendered antigen-specific by pairing with a noncovalently binding heavy chain subunit. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although cellular proteins degraded by proteasomes are the source of most antigenic peptides presented on major histocompatibility complex class I molecules, it is unknown whether the eight- to nine-residue peptides that fit in the binding groove of class I molecules are directly produced by proteasomes alone in vivo. If the eight-residue peptide SIINFEKL from chicken ovalbumin is extended by one or several residues at its C terminus and microinjected into cells or expressed from a minigene, it is processed and presented on major histocompatibility complex class I. However, processing and presentation are inhibited by proteasome inhibitors, such as lactacystin. In contrast, when SIINFEKL is extended by 2 to 25 residues at its N terminus, its presentation is not blocked by proteasome inhibitors. N-terminal processing also can occur when the extended peptide is cotranslationally inserted into the endoplasmic reticulum. Thus, two different proteolytic steps in the generation of an chicken ovalbumin-presented peptide can be distinguished. Cleavage by the proteasome defines the proper C terminus, whereas distinct peptidase(s) in the cytosol or endoplasmic reticulum may generate the appropriate N terminus from extended peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SREBP cleavage activating protein (SCAP), a membrane-bound glycoprotein, regulates the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which are membrane-bound transcription factors that control lipid synthesis in animal cells. SCAP-stimulated proteolysis releases active fragments of SREBPs from membranes of the endoplasmic reticulum and allows them to enter the nucleus where they activate transcription. Sterols such as 25-hydroxycholesterol inactivate SCAP, suppressing SREBP proteolysis and turning off cholesterol synthesis. We here report the isolation of Chinese hamster ovary cells with a point mutation in SCAP (Y298C) that renders the protein resistant to inhibition by 25-hydroxycholesterol. Like the previously described D443N mutation, the Y298C mutation occurs within the putative sterol-sensing domain, which is part of the polytopic membrane attachment region of SCAP. Cells that express SCAP(Y298C) continued to process SREBPs in the presence of 25-hydroxycholesterol and hence they resisted killing by this sterol. In wild-type Chinese hamster ovary cells the N-linked carbohydrate chains of SCAP were mostly in the endoglycosidase H-sensitive form when cells were grown in medium containing 25-hydroxycholesterol. In contrast, when cells were grown in sterol-depleted medium, these chains were converted to an endoglycosidase H-resistant form. 25-Hydroxycholesterol had virtually no effect in cells expressing SCAP(D443N) or SCAP(Y298C). The relation between this regulated carbohydrate processing to the SCAP-regulated proteolysis of SREBP remains to be explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈20-kDa C-terminal fragments (CTF) and ≈30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181–190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181–190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth factor deprivation of endothelial cells induces apoptosis, which is characterized by membrane blebbing, cell rounding, and subsequent loss of cell–matrix and cell–cell contacts. In this study, we show that initiation of endothelial apoptosis correlates with cleavage and disassembly of intracellular and extracellular components of adherens junctions. β-Catenin and plakoglobin, which form intracellular links between vascular endothelial cadherin (VE-cadherin) and actin-binding α-catenin in adherens junctions, are cleaved in apoptotic cells. In vitro incubations of cell lysates and immunoprecipitates with recombinant caspases indicate that CPP32 and Mch2 are involved, possibly by initiating proteolytic processing. Cleaved β-catenin from lysates of apoptotic cells does not bind to endogenous α-catenin, whereas plakoglobin retains its binding capacity. The extracellular portion of the adherens junctions is also altered during apoptosis because VE-cadherin, which mediates endothelial cell–cell interactions, dramatically decreases on the surface of cells. An extracellular fragment of VE-cadherin can be detected in the conditioned medium, and this “shedding” of VE-cadherin can be blocked by an inhibitor of metalloproteinases. Thus, cleavage of β-catenin and plakoglobin and shedding of VE-cadherin may act in concert to disrupt structural and signaling properties of adherens junctions and may actively interrupt extracellular signals required for endothelial cell survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptosis is a highly regulated form of cell death, characterized by distinctive features such as cellular shrinkage and nuclear condensation. We demonstrate here that proteolytic activation of hPAK65, a p21-activated kinase, induces morphological changes and elicits apoptosis. hPAK65 is cleaved both in vitro and in vivo by caspases at a single site between the N-terminal regulatory p21-binding domain and the C-terminal kinase domain. The C-terminal cleavage product becomes activated, with a kinetic profile that parallels caspase activation during apoptosis. This C-terminal hPAK65 fragment also activates the c-Jun N-terminal kinase pathway in vivo. Microinjection or transfection of this truncated hPAK65 causes striking alterations in cellular and nuclear morphology, which subsequently promotes apoptosis in both CHO and Hela cells. Conversely, apoptosis is delayed in cells expressing a dominant-negative form of hPAK65. These findings provide a direct evidence that the activated form of hPAK65 generated by caspase cleavage is a proapoptotic effector that mediates morphological and biochemical changes seen in apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycoprotein (GP) V is a major substrate cleaved by the protease thrombin during thrombin-induced platelet activation. Previous analysis of platelets from GP V-null mice suggested a role for GP V as a negative modulator of platelet activation by thrombin. We now report the mechanism by which thrombin activates GP V −/− platelets. We show that proteolytically inactive forms of thrombin induce robust stimulatory responses in GP V null mouse platelets, via the platelet GP Ib–IX–V complex. Because proteolytically inactive thrombin can activate wild-type mouse and human platelets after treatment with thrombin to cleave GP V, this mechanism is involved in thrombin-induced platelet aggregation. Platelet activation through GP Ib–IX depends on ADP secretion, and specific inhibitors demonstrate that the recently cloned P2Y12 ADP receptor (Gi-coupled ADP receptor) is involved in this pathway, and that the P2Y1 receptor (Gq-coupled ADP receptor) may play a less significant role. Thrombosis was generated in GP V null mice only in response to catalytically inactive thrombin, whereas thrombosis occurred in both genotypes (wild type and GP V null) in response to active thrombin. These data support a thrombin receptor function for the platelet membrane GP Ib–IX–V complex, and describe a novel thrombin signaling mechanism involving an initiating proteolytic event followed by stimulation of the GP Ib–IX via thrombin acting as a ligand, resulting in platelet activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-linked hypohidrotic ectodermal dysplasia (XLHED) is a heritable disorder of the ED-1 gene disrupting the morphogenesis of ectodermal structures. The ED-1 gene product, ectodysplasin-A (EDA), is a tumor necrosis factor (TNF) family member and is synthesized as a membrane-anchored precursor protein with the TNF core motif located in the C-terminal domain. The stalk region of EDA contains the sequence -Arg-Val-Arg-Arg156-Asn-Lys-Arg159-, representing overlapping consensus cleavage sites (Arg-X-Lys/Arg-Arg↓) for the proprotein convertase furin. Missense mutations in four of the five basic residues within this sequence account for ≈20% of all known XLHED cases, with mutations occurring most frequently at Arg156, which is shared by the two consensus furin sites. These analyses suggest that cleavage at the furin site(s) in the stalk region is required for the EDA-mediated cell-to-cell signaling that regulates the morphogenesis of ectodermal appendages. Here we show that the 50-kDa EDA parent molecule is cleaved at -Arg156Asn-Lys-Arg159↓- to release the soluble C-terminal fragment containing the TNF core domain. This cleavage appears to be catalyzed by furin, as release of the TNF domain was blocked either by expression of the furin inhibitor α1-PDX or by expression of EDA in furin-deficient LoVo cells. These results demonstrate that mutation of a functional furin cleavage site in a developmental signaling molecule is a basis for human disease (XLHED) and raise the possibility that furin cleavage may regulate the ability of EDA to act as a juxtacrine or paracrine factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteasomes are involved in the proteolytic generation of major histocompatibility complex (MHC) class I epitopes but their exact role has not been elucidated. We used highly purified murine 20S proteasomes for digestion of synthetic 22-mer and 41/44-mer ovalbumin partial sequences encompassing either an immunodominant or a marginally immunogenic epitope. At various times, digests were analyzed by pool sequencing and by semiquantitative electrospray ionization mass spectrometry. Most dual cleavage fragments derived from 22-mer peptides were 7-10 amino acids long, with octa- and nonamers predominating. Digestion of 41/44-mer peptides initially revealed major cleavage sites spaced by two size ranges, 8 or 9 amino acids and 14 or 15 amino acids, followed by further degradation of the latter as well as of larger single cleavage fragments. The final size distribution was slightly broader than that of fragments derived from 22-mer peptides. The majority of peptide bonds were cleaved, albeit with vastly different efficiencies. This resulted in multiple overlapping proteolytic fragments including a limited number of abundant peptides. The immunodominant epitope was generated abundantly whereas only small amounts of the marginally immunogenic epitope were detected. The frequency distributions of amino acids flanking proteasomal cleavage sites are correlated to that reported for corresponding positions of MHC class I binding peptides. The results suggest that proteasomal degradation products may include fragments with structural properties similar to MHC class I binding peptides. Proteasomes may thus be involved in the final stages of proteolytic epitope generation, often without the need for downstream proteolytic events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The eukaryotic convertase family plays an important role in posttranslational proteolytic processing and activation of many pro- and polypeptides that have at their cleavage sites the paired basic motif, RX(K/R)R. Recent studies have revealed that the cleavage site of insect pro-vitellogenins (pro-Vg) also contains this motif. To identify and characterize the insect pro-Vg processing enzyme, Vg convertase (VC), its cDNA was cloned from a vitellogenic female fat body cDNA library of the mosquito, Aedes aegypti. The 3735-bp-long VC cDNA has an open reading frame encoding a 115-kDa protein. In vitro transcription/translation of VC cDNA revealed that this 115-kDa protein becomes 140 kDa after co- and posttranslational modifications. The VC deduced amino acid sequence has high similarity to and a domain structure characteristic of furin-like convertases. Northern blot analysis showed that a single 4.2-kb transcript was expressed in the fat body during the first 18 hr of the Vg synthetic period. Coexpression of VC cDNA with mosquito Vg cDNA resulted in correct cleavage of pro-Vg. Thus, this newly identified convertase is, indeed, a functional fat body-specific enzyme for pro-Vg cleavage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three of the predominant features of apoptosis are internucleosomal DNA fragmentation, plasma membrane bleb formation, and retraction of cell processes. We demonstrate that actin is a substrate for the proapoptotic cysteine protease interleukin 1beta-converting enzyme. Actin cleaved by interleukin 1beta-converting enzyme can neither inhibit DNase I nor polymerize to its filamentous form as effectively as intact actin. These findings suggest a mechanism for the coordination of the proteolytic, endonucleolytic, and morphogenetic aspects of apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endoproteolytic processing of the human protein C (HPC) precursor to its mature form involves cleavage of the propeptide after amino acids Lys-2-Arg-1 and removal of a Lys156-Arg157 dipeptide connecting the light and heavy chains. This processing was inefficient in the mammary gland of transgenic mice and pigs. We hypothesized that the protein processing capacity of specific animal organs may be improved by the coexpression of selected processing enzymes. We tested this by targeting expression of the human proprotein processing enzyme, named paired basic amino acid cleaving enzyme (PACE)/furin, or an enzymatically inactive mutant, PACEM, to the mouse mammary gland. In contrast to mice expressing HPC alone, or to HPC/PACEM bigenic mice, coexpression of PACE with HPC resulted in efficient conversion of the precursor to mature protein, with cleavage at the appropriate sites. These results suggest the involvement of PACE in the processing of HPC in vivo and represent an example of the engineering of animal organs into bioreactors with enhanced protein processing capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All of the DNA cleavage and strand transfer events required for transposition of insertion sequence IS10 are carried out by a 46-kDa IS10-encoded transposase protein. Limited proteolysis demonstrates that transposase has two principal structural domains, a 28-kDa N-terminal domain (N alpha beta; aa 1-246) and a 17-kDa C-terminal domain (C; aa 256-402). The two domains are connected by a 1-kDa proteolytic-sensitive linker region (aa 247-255). The N-terminal domain N alpha beta can be further subdivided into domains N alpha and N beta by a weaker protease-sensitive site located 6 kDa (53 aa) from the N terminus. The N beta and N alpha beta fragments are capable of nonspecific DNA binding as determined by Southwestern blot analysis. None of the fragments alone is capable of carrying out the first step of transposition, assembly of a synaptic complex containing a pair of transposon ends. Remarkably, complete transposition activity can be reconstituted by mixing fragment N alpha beta and fragment C, with or without the intervening linker region. We infer that the structural integrity of transposase during the transitions involved in the chemical steps of the transposition reaction is maintained independent of the linker, presumably by direct contacts between and among the principal domains. Reconstitution of activity in the absence of the linker region is puzzling, however, because mutations that block strand transfer or affect insertion specificity alter linker region residues. Additional reconstitution experiments demonstrate that the N alpha region is dispensable for formation of a synaptic complex but is required for complexes to undergo cleavage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A prominent feature of several type of cancer is cachexia. This syndrome causes a marked loss of lean body mass and muscle wasting, and appears to be mediated by cytokines and tumour products. There are several proteases and proteolytic pathways that could be responsible for the protein breakdown. In the present study, we investigated whether caspases are involved in the proteolytic process of skeletal muscle catabolism observed in a murine model of cancer cachexia (MAC16), in comparison with a related tumour (MAC13), which does not induce cachexia. Using specific peptide substrates, there was an increase of 54% in the proteolytic activity of caspase-1, 84% of caspase-8, 98% of caspase-3 151% to caspase-6 and 177% of caspase-9, in the gastrocnemius muscle of animals bearing the MAC16 tumour (up to 25% weight loss), in relation to muscle from animals bearing the MAC13 tumour (1-5% weight loss). The dual pattern of 89 kDa and 25 kDa fragmentation of poly (ADP-ribose) polymerase (PARP) occurred in the muscle samples from animals bearing the MAC16 tumour and with a high amount of caspase-like activity. Cytochrome c was present in the cytosolic fractions of gastrocnemius muscles from both groups of animals, suggesting that cytochrome c release from mitochondria may be involved in caspase activation. There was no evidence for DNA fragmentation into a nucleosomal ladder typical of apoptosis in the muscles of either group of mice. This data supports a role for caspases in the catabolic events in muscle involved in the cancer cachexia syndrome. © 2001 Cancer Research Campaign.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex hormone-binding globulin (SHBG) is a homodimeric plasma glycoprotein that is the major sex steroid carrier-protein in the bloodstream and functions also as a key regulator of steroid bioavailability within target tissues, such as the prostate. Additionally, SHBG binds to prostatic cell membranes via the putative and unidentified SHBG receptor (RSHBG), activating a signal transduction pathway implicated in stimulating both proliferation and expression of prostate specific antigen (PSA) in prostate cell lines in vitro. A yeast-two hybrid assay suggested an interaction between SHBG and kallikrein-related protease (KLK) 4, which is a serine protease implicated in the progression of prostate cancer. The potential interaction between these two proteins was investigated in this PhD thesis to determine whether SHBG is a proteolytic substrate of KLK4 and other members of the KLK family including KLK3/PSA, KLK7 and KLK14. Furthermore, the effects from SHBG proteolytic degradation on SHBG-regulated steroid bioavailability and the activation of the putative RSHBG signal transduction pathway were examined in the LNCaP prostate cancer cell line. SHBG was found to be a proteolytic substrate of the trypsin-like KLK4 and KLK14 in vitro, yielding several proteolysis fragments. Both chymotrypsin-like PSA and KLK7 displayed insignificant proteolytic activity against SHBG. The kinetic parameters of SHBG proteolysis by KLK4 and KLK14 demonstrate a strong enzyme-substrate binding capacity, possessing a Km of 1.2 ± 0.7 µM and 2.1 ± 0.6 µM respectively. The catalytic efficiencies (kcat/Km) of KLK4 and KLK14 proteolysis of SHBG were 1.6 x 104 M-1s-1 and 3.8 x 104 M-1s-1 respectively, which were comparable to parameters previously reported for peptide substrates. N-terminal sequencing of the fragments revealed cleavage near the junction of the N- and C-terminal laminin globulin-like (G-like) domains of SHBG, resulting in the division of the two globulins and ultimately the full degradation of these fragments by KLK4 and KLK14 over time. Proteolytic fragments that may retain steroid binding were rapidly degraded by both proteases, while fragments containing residues beyond the steroid binding pocket were less degraded over the same period of time. Degradation of SHBG was inhibited by the divalent metal cations calcium and zinc for KLK4, and calcium, zinc and magnesium for KLK14. The human secreted serine protease inhibitors (serpins), α1-antitrypsin and α2-antiplasmin, inhibited KLK4 and KLK14 proteolysis of SHBG; α1-antichymotrypsin inhibited KLK4 but not KLK14 activity. The inhibition by these serpins was comparable and in some cases more effective than general trypsin protease inhibitors such as aprotinin and phenylmethanesulfonyl fluoride (PMSF). The binding of 5α-dihydrotestosterone (DHT) to SHBG modulated interactions with KLK4 and KLK14. Steroid-free SHBG was more readily digested by both enzymes than DHT-bound SHBG. Moreover, a binding interaction exists between SHBG and pro-KLK4 and pro-KLK14, with DHT strengthening the binding to pro-KLK4 only. The inhibition of androgen uptake by cultured prostate cancer cells, mediated by SHBG steroid-binding, was examined to assess whether SHBG proteolysis by KLK4 and KLK14 modulated this process. Proteolytic digestion eliminated the ability of SHBG to inhibit the uptake of DHT from conditioned media into LNCaP cells. Therefore, the proteolysis of SHBG by KLK4 and KLK14 increased steroid bioavailability in vitro, leading to an increased uptake of androgens by prostate cancer cells. Interestingly, different transcriptional responses of PSA and KLK2, which are androgen-regulated genes, to DHT-bounsd SHBG treatment were observed between low and high passage number LNCaP cells (lpLNCaP and hpLNCaP respectively). HpLNCaP cells treated with DHT-bound SHBG demonstrated a significant synergistic upregulation of PSA and KLK2 above DHT or SHBG treatment alone, which is similar to previously reported downstream responses from RSHBG-mediated signaling activation. As this result was not seen in lpLNCaP cells, only hpLNCaP cells were further investigated to examine the modulation of potential RSHBG activity by KLK4 and KLK14 proteolysis of SHBG. Contrary to reported results, no increase in intracellular cAMP was observed in hpLNCaP cells when treated with SHBG in the presence and absence of either DHT or estradiol. As a result, the modulation of RSHBG-mediated signaling activation could not be determined. Finally, the identification of the RSHBG from both breast (MCF-7) and prostate cancer (LNCaP) cell lines was attempted. Fluorescently labeled peptides corresponding to the putative receptor binding domain (RBD) of SHBG were shown to be internalized by MCF-7 cells. Crosslinking of the RBD peptide to the cell surfaces of both MCF-7 and LNCaP cells, demonstrated the interaction of the peptide with several targets. These targets were then captured using RBD peptides synthesized onto a hydrophilic scaffold and analysed by mass spectrometry. The samples captured by the RBD peptide returned statistically significantly matches for cytokeratin 8, 18 and 19 as well as microtubule-actin crosslinking factor 1, which may indicate a novel interaction between SHBG and these proteins, but ultimately failed to detect a membrane receptor potentially responsible for the putative RSHBG-mediated signaling. This PhD project has reported the proteolytic processing of SHBG by two members of the kallikrein family, KLK4 and KLK14. The effect of SHBG proteolysis by KLK4 and KLK14 on RSHBG-mediated signaling activation was unable to be determined as the reported signal transduction pathway was not activated after treatment with SHBG, in combination with either DHT or estradiol. However, the digestion of SHBG by these two proteases positively regulated androgen bioavailability to prostate cancer cells in vitro. The increased uptake of androgens is deleterious in prostate cancer due to the promotion of proliferation, metastasis, invasion and the inhibition of apoptosis. The increased bioavailability of androgens, from SHBG proteolysis by KLK4 and KLK14, may therefore promote both carcinogenesis and progression of prostate cancer. Finally, this information may contribute to the development of therapeutic treatment strategies for prostate cancer by inhibiting the proteolysis of SHBG, by KLK4 and KLK14, to prevent the increased uptake of androgens by hormone-dependent cancerous tissues.