942 resultados para protein aggregation and neurofilament
Resumo:
Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.
Resumo:
Hsp70s are highly conserved ATPase molecular chaperones mediating the correct folding of de novo synthesized proteins, the translocation of proteins across membranes, the disassembly of some native protein oligomers, and the active unfolding and disassembly of stress-induced protein aggregates. Here, we bring thermodynamic arguments and biochemical evidences for a unifying mechanism named entropic pulling, based on entropy loss due to excluded-volume effects, by which Hsp70 molecules can convert the energy of ATP hydrolysis into a force capable of accelerating the local unfolding of various protein substrates and, thus, perform disparate cellular functions. By means of entropic pulling, individual Hsp70 molecules can accelerate unfolding and pulling of translocating polypeptides into mitochondria in the absence of a molecular fulcrum, thus settling former contradictions between the power-stroke and the Brownian ratchet models for Hsp70-mediated protein translocation across membranes. Moreover, in a very different context devoid of membrane and components of the import pore, the same physical principles apply to the forceful unfolding, solubilization, and assisted native refolding of stable protein aggregates by individual Hsp70 molecules, thus providing a mechanism for Hsp70-mediated protein disaggregation.
Resumo:
Selostus: Lypsylehmien valkuaisruokinnan ja hedelmällisyyden yhteys: kirjallisuustutkimus valkuaisruokinnan vaikutuksista Suomen olosuhteissa
Resumo:
Transepithelial Na+ reabsorption across tight epithelia is regulated by aldosterone. Mineralocorticoids modulate the expression of a number of proteins. Na+,K+-ATPase has been identified as an aldosterone-induced protein (Geering, K., M. Girardet, C. Bron, J. P. Kraehenbuhl, and B. C. Rossier, 1982, J. Biol. Chem., 257:10338-10343). Using A6 cells (kidney of Xenopus laevis) grown on filters we demonstrated by Northern blot analysis that the induction of Na+,K+-ATPase was mainly mediated by a two- to fourfold accumulation of both alpha- and beta-subunit mRNAs. The specific competitor spironolactone decreased basal Na+ transport, Na+,K+-ATPase mRNA, and the relative rate of protein biosynthesis, and it blocked the response to aldosterone. Cycloheximide inhibited the aldosterone-dependent sodium transport but did not significantly affect the cytoplasmic accumulation of Na+,K+-ATPase mRNA induced by aldosterone.
Resumo:
The pathological formation of proteinaceous aggregates that accumulate into the brain cells of patients are hallmarks of neurodegenerative diseases such as Alzheimer's disease, amyotrophic lateral sclerosis and the heterogeneous group of polyglutamine (polyQ) diseases. In the polyQ diseases, the most upstream events of the pathogenic cascade are the misfolding and aggregation of proteins, such as huntingtin in Huntington's disease, that contain expanded stretch of glutamine residues above 35--‐40 repeats. This expanded polyQ stretch triggers the misfolding and aggregation of cytotoxic polyQ proteins in the neurons that cause cell death through different processes, like apoptosis, excessive inflammation, formation of free radicals, eventually leading to neuronal loss and neurodegeneration. This study focuses on the cellular network of chaperone proteins that can prevent protein aggregation by binding misfolding intermediates and may, as in the case of HSP70, actively unfold misfolded proteins into refoldable non--‐toxic ones (Hinault et al., 2010; Sharma et al., 2011). The chaperones can also collaborate with the proteasome to convert stable harmful proteins into harmless amino acids. Thus, the chaperone proteins that are the most important cellular factors of prevention and curing of protein misfolding, are negatively affected by aging (Morley et al., 2002) and fail to act properly in the neurons of aged persons, which eventually may lead to neurodegenerative pathologies. The general aim of this research was to identify least toxic drugs that can upregulate the expression of chaperone genes in cells suffering from polyQ--‐ mediated protein aggregation and degeneration. The specific aim of this study was to observe the effect of ten drugs on polyQ aggregation in a recombinant nematode Caenorhabditis elegans expressing a chimeric protein containing a sequence of 35 glutamines (Q35) fused to the green fluorescent protein in muscle cells, which causes an age--‐ and temperature--‐ dependent phenotype of accelerated paralysis. The drugs were selected after having proven their causing the overexpression of chaperone proteins in a previous wide screening of 2000 drugs on the moss plant Physcomitrella patens. The screening that we performed in this study was on these ten drugs. It suggested that piroxicam and anisindione were good reducers of polyglutamine disease mediated paralysis. A hypothesis can be made that they may act as good enhancers of the heat shock response, which causes the overexpression of many HSP chaperones and thus reduce motility impairment of polyQ disease expressing nematodes. Piroxicam was found to have the greatest effect on reducing polyQ35 proteins aggregates mediated paralysis in a dose--‐dependent manner but was also found to either have a toxic effect on wild type C.elegans, either to change its natural motility behavior, eventually reducing its motility in both cases. Chloroform should be preferred over DMSO as a drug solvent as it appears to be less toxic to C.elegans.
Resumo:
Due to the development of new 'bedside' investigative methods, relatively abstract physiologic concepts such as energy cost of growth, efficiency of protein gain, metabolic cost of protein gain and protein turnover have been quantified in very low birthweight infants. 'Healthy' premature infants expend about 30% of their energy to cover the metabolic cost of growth. Stable isotope techniques using 15N-(or 13C)-labeled amino acids gave a new insight into this very high energy demanding process represented by the protein accretion in growing tissues. It has been demonstrated that the rate of protein synthesis (10-12 g/kg/day) greatly exceeds that necessary for net protein gain (2 g/kg/day). The postnatal growth and protein metabolism have different characteristics in 'healthy', 'sick' or 'intrauterine undernourished' very low birthweight infants.
Resumo:
Background: It has been shown in a variety of organisms, including mammals, that genes that appeared recently in evolution, for example orphan genes, evolve faster than older genes. Low functional constraints at the time of origin of novel genes may explain these results. However, this observation has been recently attributed to an artifact caused by the inability of Blast to detect the fastest genes in different eukaryotic genomes. Distinguishing between these two possible explanations would be of great importance for any studies dealing with the taxon distribution of proteins and the origin of novel genes. Results: Here we used simulations of protein sequences to examine the capacity of Blast to detect proteins of diverse evolutionary rates in the different species of an eukaryotic phylogenetic tree that included metazoans, fungi and plants. We simulated the evolution of protein genes with the same evolutionary rates than those observed in functional mammalian genes and with among-site rate heterogeneity. Under these conditions, we found that only a very small percentage of simulated ancestral eukaryotic proteins was affected by the Blast artifact. We show that the good detectability of Blast is due to the heterogeneity of protein evolutionary rates at different sites, since only a small conserved motif in a sequence suffices to detect its homologues. Our results indicate that Blast, at least when applied within eukaryotes, only misses homologues of extremely fast-evolving sequences, which are rare in the mammalian genome, as well as sequences evolving homogeneously or pseudogenes.Conclusion: Although great care should be exercised in the recognition of remote homologues, most functional mammalian genes can be detected in eukaryotic genomes by Blast. That is, the majority of functional mammalian genes are not as fast as for not being detected in other metazoans, fungi or plants, if they had been present in these organisms. Thus, the correlation previously found between age and rate seems not to be due to a pure Blast artifact, at least for mammals. This may have important implications to understand the mechanisms by which novel genes originate.
Resumo:
The combined effect of pressure and mild temperature treatments on bovine sarcoplasmic proteins and quality parameters was assessed. M. longissimus dorsi samples were pressurised in a range of 200–600 MPa and 10–30 °C. High Pressure Processing (HPP) induced a reduction of protein solubility (p < 0.001) compared to non-treated controls (NT), more pronounced above 200 MPa. HPP at pressures higher than 200 MPa induced a strong modification (p < 0.001) of meat colour and a reduction of water holding capacity (WHC). SDS–PAGE analysis demonstrated that HPP significantly modified the composition of the sarcoplasmic protein fraction. The pressurisation temperature mainly affected protein solubility and colour; a smaller effect was observed on protein profiles. Significant correlations (p < 0.001) between sarcoplasmic protein solubility and both expressible moisture (r = −0.78) and colour parameters (r = −0.81 to −0.91) suggest that pressure induced denaturation of sarcoplasmic proteins could influence to some extent WHC and colour modifications of beef. Changes in protein band intensities were also significantly correlated with protein solubility, meat lightness and expressible moisture. These results describe the changes induced by HPP on sarcoplasmic proteins and confirm a relationship between modification of the sarcoplasmic protein fraction and alteration of meat quality characteristics
Resumo:
Septins are conserved GTPases that form filaments and are required for cell division. During interphase, septin filaments associate with cellular membrane and cytoskeleton networks, yet the functional significance of these associations have, to our knowledge, remained unknown. We recently discovered that different septins, SEPT2 and SEPT11, regulate the InlB-mediated entry of Listeria monocytogenes into host cells. Here we address the role of SEPT2 and SEPT11 in the InlB-Met interactions underlying Listeria invasion to explore how septins modulate surface receptor function. We observed that differences in InlB-mediated Listeria entry correlated with differences in Met surface expression caused by septin depletion. Using atomic force microscopy on living cells, we show that septin depletion significantly reduced the unbinding force of InlB-Met interaction and the viscosity of membrane tethers at locations where the InlB-Met interaction occurs. Strikingly, the same order of difference was observed for cells in which the actin cytoskeleton was disrupted. Consistent with a proposed role of septins in association with the actin cytoskeleton, we show that cell elasticity is decreased upon septin or actin inactivation. Septins are therefore likely to participate in anchorage of the Met receptor to the actin cytoskeleton, and represent a critical determinant in surface receptor function.
Resumo:
G-protein-signaling pathways convey extracellular signals inside the cells and regulate distinct physiological responses. This type of signaling pathways consists of three major components: G-protein-coupled receptors (GPCRs), heterotrimeric G proteins (G-proteins) and downstream effectors. Upon ligand binding, GPCRs activate heterotrimeric G proteins to initiate the signaling cascade. Dysfunction of GPCR signaling correlates with numerous diseases such as diabetes, nervous and immune system deficiency, and cancer. As the signaling switcher, G-proteins (Gs, Gq/11, G12/13, and Gi/o) have been an appealing topic of research for decades. A heterotrimeric G-protein is composed of three subunits, the guanine nucleotide associated a-subunit, ß and y subunits. In general, the duration of signaling is determined by the lifetime of activated (GTP bound) Ga subunits. Identification of novel communication partners of Ga subunits appears to be an attractive way to understand the machinery of GPCR signaling. In our lab, we mainly focus on Gao, which is abundantly expressed in the nervous system. Here we present two novel interacting partners of Drosophila Gao: Dhit and Kermit, identified through yeast two-hybrid screening and genetic screening respectively. Dhit is characterized by a small size with a conserved RGS domain and an N-terminal cysteine rich motif. The RGS domain possesses the GAP (GTPase activating protein) activity towards G proteins. However, we found that Dhit exerts not only the GAP activity but also the GDI (guanine nucleotide dissociation inhibitor) activity towards Gao. The unexpected GDI activity is preserved in GAIP/RGS19 - a mammalian homologue of Dhit. Further experiments confirmed the GDI activity of Dhit and GAIP/RGS19 in Drosophila and mammalian cell models. Therefore, we propose that Dhit and its mammalian homologues modulate GPCR signaling by a double suppression of Ga subunits - suppression of their nucleotide exchange with GTP and acceleration of their hydrolysis of GTP. Kermit/GEPC was first identified as a binding partner of GAIP/RGS19 in a yeast two- hybrid screen. Instead of interacting with the Drosophila homologue of GAIP/RGS19 (Dhit), Kermit binds to Gao in vivo and in vitro. The functional consequence of Kermit/Gao interaction is the regulation of localization of Vang (one of the planar cell polarity core components) at the apical membrane. Overall, my work elaborated the action of Gao with its two interaction partners in Gao- mediated signaling pathway. Conceivably, the understanding of GPCR signaling including Gao and its regulators or effectors will ultimately shed light on future pharmaceutical research. - Les voies de signalisation médiées par les protéines G transmettent des signaux extracellulaires à l'intérieur des cellules pour réguler des réponses physiologiques distinctes. Cette voie de signalisation consiste en trois composants majeurs : les récepteurs couplés aux protéines G (GPCRs), les protéines G hétérotrimériques (G-proteins) et les effecteurs en aval. Suite à la liaison du ligand, les GPCRs activent les protéines G hétérotrimériques qui initient la cascade de signalisation. Des dysfonctions dans la signalisation médiée par les GPCRs sont corrélées avec de nombreuses maladies comme le diabète, des déficiences immunes et nerveuses, ainsi que le cancer. Puisque la voie de signalisation s'active et se désactive, les protéines G (Gs, Gq/11, G12/13 et Gi/o) ont été un sujet de recherche attrayant pendant des décennies. Une protéine G hétérotrimérique est composée de trois sous-unités, la sous-unité a associée au nucléotide guanine, ainsi que les sous-unités ß et y. En général, la durée du signal est déterminée par le temps de demi-vie des sous-unités Ga activées (Ga liées au GTP). Identifier de nouveaux partenaires de communication des sous-unités Ga se révèle être un moyen attractif de comprendre la machinerie de la signalisation par les GPCRs. Dans notre laboratoire nous nous sommes concentrés principalement sur Gao qui est exprimée de manière abondante dans le système nerveux. Nous présentons ici deux nouveaux partenaires qui interagissent avec Gao chez la drosophile: Dhit et Kermit, qui ont été identifiés respectivement par la méthode du yeast two-hybrid et par criblage génétique. Dhit est caractérisé par une petite taille, avec un domaine RGS conservé et un motif N- terminal riche en cystéines. Le domaine RGS contient une activité GAP (GTPase activating protein) pour les protéines G. Toutefois, nous avons découvert que Dhit exerce non seulement une activité GAP mais aussi une activité GDI (guanine nucleotide dissociation inhibitor) à l'égard de Gao. Cette activité GDI inattendue est préservée dans RGS19 - un homologue de Dhit chez les mammifères. Des expériences supplémentaires ont confirmé l'activité GDI de Dhit et de RGS19 chez Drosophila melanogaster et les modèles cellulaires mammifères. Par conséquent, nous proposons que Dhit et ses homologues mammifères modulent la signalisation GPCR par une double suppression des sous-unités Ga - suppression de leur nucléotide d'échange avec le GTP et une accélération dans leur hydrolyse du GTP. Kermit/GIPC a été premièrement identifié comme un partenaire de liaison de RGS19 dans le criblage par yeast two-hybrid. Au lieu d'interagir avec l'homologue chez la drosophile de RGS19 (Dhit), Kermit se lie à Gao in vivo et in vitro. La conséquence fonctionnelle de l'interaction Kermit/Gao est la régulation de la localisation de Vang, un des composants essentiel de la polarité planaire cellulaire, à la membrane apicale. Globalement, mon travail a démontré l'action de Gao avec ses deux partenaires d'interaction dans la voie de signalisation médiée par Gao. La compréhension de la signalisation par les GPCRs incluant Gao et ses régulateurs ou effecteurs aboutira à mettre en lumière de futurs axes dans la recherche pharmacologique.
Resumo:
We have developed numerical simulations of three dimensional suspensions of active particles to characterize the capabilities of the hydrodynamic stresses induced by active swimmers to promote global order and emergent structures in active suspensions. We have considered squirmer suspensions embedded in a fluid modeled under a Lattice Boltzmann scheme. We have found that active stresses play a central role to decorrelate the collective motion of squirmers and that contractile squirmers develop significant aggregates.
Resumo:
In mammals, transcriptional autorepression by Period (PER) and Cryptochrome (CRY) protein complexes is essential for the generation of circadian rhythms. We have identified CAVIN-3 as a new, cytoplasmic PER2-interacting protein influencing circadian clock properties. Thus, CAVIN-3 loss- and gain-of-function shortened and lengthened, respectively, the circadian period in fibroblasts and affected PER:CRY protein abundance and interaction. While depletion of protein kinase Cδ (PKCδ), a known partner of CAVIN-3, had little effect on circadian gene expression, CAVIN-3 required the PKCδ-binding site to exert its effect on period length. This suggests the involvement of yet uncharacterized protein kinases. Finally, CAVIN-3 activity in circadian gene expression was independent of caveolae.
Resumo:
The objective of this work was to transfer Zucchini yellow mosaic virus coat protein (ZYMV-CP) and neomycin phosphotransferase II (NPT II) genes to the watermelon 'Crimson Sweet'(CS) genome, and to compare the transgenic progenies T1 and T2 with the nontransformed parental cultivar for morphological, pomological, growth and yield characteristics. The ZYMV-CP gene was transferred by Agrobacterium tumefaciens. The presence of the gene in transgenic T0, T1 and T2 plants was determined by polymerase chain reaction, and the results were confirmed by Southern blot. Two experiments were performed, one in the winter-spring and the other in the summer-autumn. In both experiments, the hypocotyl length of transgenic seedlings was significantly higher than that of nontransgenic parental ones. In the second experiment, the differences between transgenic and nontransgenic individuals were significant concerning fruit rind thickness, flesh firmness, fruit peduncle length, size of pistil scar, and a* values for fruit stripe or flesh color. Transferring ZYMV-CP gene to CS genome affected only a few characteristics from the 80 evaluated ones. The changes in rind thickness, flesh firmness and flesh color a* values are favorable, while the increase in the size of pistil scar is undesirable. The transgenic watermelon line having ZYMV-CP gene and the parental cultivar CS are very similar.
Resumo:
- The objective of this work was to determine the total protein profile and the contents of the four major protein fractions (albumin, globulin, prolamin and glutelin) and of the amino acids in the endosperm of the rice wild species Oryza glumaepatula. The experiment was performed with 29 accessions of this species, collected from 13 Brazilian locations, and two commercial cultivars. Protein samples were prepared using dried, polished, and ground grains to obtain homogeneous, dry flour used in the preparation of extracts. Oryza glumaepatula accessions were identified with the highest levels of total protein, albumin and glutelin protein fractions, and amino acids (with the exception of tryptophan) in comparison to the two analized rice cultivars. The albumin and glutelin profiles in SDS-Page were distinct between rice cultivars and O. glumaepatula. This wild species has the potential to increase the nutritional quality of rice storage protein through interspecific crosses.
Resumo:
The aim of the present work was to study whole body protein synthesis and breakdown, as well as energy metabolism, in very low birth weight premature infants (less than 1500 g) during their rapid growth phase. Ten very low birth weight infants were studied during their first and second months of life. They received a mean energy intake of 114 kcal/kg X day and 3 g protein/kg X day as breast milk or milk formula. The average weight gain was 15 g/kg X day. The apparent energy digestibility was 88%, i.e. 99 kcal/kg X day. Their resting postprandial energy expenditure was 58 kcal/kg X day, indicating that 41 kcal/kg X day was retained. The apparent protein digestibility was 89%, i.e. 2.65 g/kg X day. Their rate of protein oxidation was 0.88 g/kg X day so that protein retention was 1.76 g/kg X day. There was a linear relationship between N retention and N intake (r = 0.78, p less than 0.001). The slope of the regression line indicates a net efficiency of N utilization of 67%. Estimates of body composition from the energy balance, coupled with N balance method, showed that 25% of the gain was fat and 75% was lean tissue. Whole body protein synthesis and breakdown were determined using repeated oral administration of 15N glycine for 60-72 h, and 15N enrichment in urinary urea was measured. Protein synthesis averaged 11.2 g/kg X day and protein breakdown 9.4 g/kg X day. Muscular protein breakdown, as estimated by 3-methylhistidine excretion, contributed to 12% of the total protein breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)