977 resultados para proof


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to investigate the performance of 3D synchrotron differential phase contrast (DPC) imaging for the visualization of both macroscopic and microscopic aspects of atherosclerosis in the mouse vasculature ex vivo. The hearts and aortas of 2 atherosclerotic and 2 wild-type control mice were scanned with DPC imaging with an isotropic resolution of 15 μm. The coronary artery vessel walls were segmented in the DPC datasets to assess their thickness, and histological staining was performed at the level of atherosclerotic plaques. The DPC imaging allowed for the visualization of complex structures such as the coronary arteries and their branches, the thin fibrous cap of atherosclerotic plaques as well as the chordae tendineae. The coronary vessel wall thickness ranged from 37.4 ± 5.6 μm in proximal coronary arteries to 13.6 ± 3.3 μm in distal branches. No consistent differences in coronary vessel wall thickness were detected between the wild-type and atherosclerotic hearts in this proof-of-concept study, although the standard deviation in the atherosclerotic mice was higher in most segments, consistent with the observation of occasional focal vessel wall thickening. Overall, DPC imaging of the cardiovascular system of the mice allowed for a simultaneous detailed 3D morphological assessment of both large structures and microscopic details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a linear production model, we characterize the class of efficient and strategy-proof allocation functions, and the class of efficient and coalition strategy-proof allocation functions. In the former class, requiring equal treatment of equals allows us to identify a unique allocation function. This function is also the unique member of the latter class which satisfies uniform treatment of uniforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a general class of priority-based allocation problems with weak priority orders and identify conditions under which there exists a strategy-proof mechanism which always chooses an agent-optimal stable, or constrained efficient, matching. A priority structure for which these two requirements are compatible is called solvable. For the general class of priority-based allocation problems with weak priority orders,we introduce three simple necessary conditions on the priority structure. We show that these conditions completely characterize solvable environments within the class of indifferences at the bottom (IB) environments, where ties occur only at the bottom of the priority structure. This generalizes and unifies previously known results on solvable and unsolvable environments established in school choice, housing markets and house allocation with existing tenants. We show how the previously known solvable cases can be viewed as extreme cases of solvable environments. For sufficiency of our conditions we introduce a version of the agent-proposing deferred acceptance algorithm with exogenous and preference-based tie-breaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single object must be allocated to at most one of n agents. Money transfers are possible and preferences are quasilinear. We offer an explicit description of the individually rational mechanisms which are Pareto-optimal in the class of feasible, strategy-proof, anonymous and envy-free mechanisms. These mechanisms form a one-parameter infinite family; the Vickrey mechanism is the only Groves mechanism in that family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aggregation rule maps each profile of individual strict preference orderings over a set of alternatives into a social ordering over that set. We call such a rule strategyproof if misreporting one’s preference never produces a social ordering that is strictly between the original ordering and one’s own preference. After describing a few examples of manipulable rules, we study in some detail three classes of strategy-proof rules: (i)rules based on a monotonic alteration of the majority relation generated by the preference profile; (ii)rules improving upon a fixed status-quo; and (iii) rules generalizing the Condorcet-Kemeny aggregation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a proof of Iitaka's conjecture C2,1 using only elementary methods from algebraic geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present, a fraction of 0.1 - 0.2% of the patients undergoing surgery become aware during the process. The situation is referred to as anesthesia awareness and is obviously very traumatic for the person experiencing it. The reason for its occurrence is mostly an insufficient dosage of the narcotic Propofol combined with the incapability of the technology monitoring the depth of the patient’s anesthetic state to notice the patient becoming aware. A solution can be a highly sensitive and selective real time monitoring device for Propofol based on optical absorption spectroscopy. Its working principle has been postulated by Prof. Dr. habil. H. Hillmer and formulated in DE10 2004 037 519 B4, filed on Aug 30th, 2004. It consists of the exploitation of Intra Cavity Absorption effects in a two mode laser system. In this Dissertation, a two mode external cavity semiconductor laser, which has been developed previously to this work is enhanced and optimized to a functional sensor. Enhancements include the implementation of variable couplers into the system and the implementation of a collimator arrangement into which samples can be introduced. A sample holder and cells are developed and characterized with a focus on compatibility with the measurement approach. Further optimization concerns the overall performance of the system: scattering sources are reduced by re-splicing all fiber-to-fiber connections, parasitic cavities are eliminated by suppressing the Fresnel reflexes of all one fiber ends by means of optical isolators and wavelength stability of the system is improved by the implementation of thermal insulation to the Fiber Bragg Gratings (FBG). The final laser sensor is characterized in detail thermally and optically. Two separate modes are obtained at 1542.0 and 1542.5 nm, tunable in a range of 1nm each. Mode Full Width at Half Maximum (FWHM) is 0.06nm and Signal to Noise Ratio (SNR) is as high as 55 dB. Independent of tuning the two modes of the system can always be equalized in intensity, which is important as the delicacy of the intensity equilibrium is one of the main sensitivity enhancing effects formulated in DE10 2004 037 519 B4. For the proof of concept (POC) measurements the target substance Propofol is diluted in the solvents Acetone and DiChloroMethane (DCM), which have been investigated for compatibility with Propofol beforehand. Eight measurement series (two solvents, two cell lengths and two different mode spacings) are taken, which draw a uniform picture: mode intensity ratio responds linearly to an increase of Propofol in all cases. The slope of the linear response indicates the sensitivity of the system. The eight series are split up into two groups: measurements taken in long cells and measurements taken in short cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, I designed and implemented a virtual machine (VM) for a monomorphic variant of Athena, a type-omega denotational proof language (DPL). This machine attempts to maintain the minimum state required to evaluate Athena phrases. This thesis also includes the design and implementation of a compiler for monomorphic Athena that compiles to the VM. Finally, it includes details on my implementation of a read-eval-print loop that glues together the VM core and the compiler to provide a full, user-accessible interface to monomorphic Athena. The Athena VM provides the same basis for DPLs that the SECD machine does for pure, functional programming and the Warren Abstract Machine does for Prolog.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Another Proof of the Preceding Theory was produced as part of a residency run by Artists in Archeology in conjunction with the Stonehenge Riverside project. The film explores the relationship between science, work and ritual, imagining archaeology as a future cult. As two robed disciples stray off from the dig, they are drawn to the drone of the stones and proceed to play the henge like a gigantic Theremin. Just as a Theremin is played with the hand interfering in an electric circuit and producing sound without contact, so the stones respond to the choreographed bodily proximity. Finally, one of the two continues alone to the avenue at Avebury, where the magnetic pull of the stones reaches its climax. Shot on VHS, the film features a score by Zuzushi Monkey, with percussion and theremin sounds mirroring the action. The performers are mostly artists and archeologists from the art and archaeology teams. The archeologists were encouraged to perform their normal work in the robes, in an attempt to explore the meeting points of science and ritual and interrogate our relationship to an ultimately unknowable prehistoric past where activities we do not understand are relegated to the realm of religion. Stonehenge has unique acoustic properties, it’s large sarsen stones are finely worked on the inside, left rough on the outside, intensifying sound waves within the inner horseshoe, but since their real use, having been built over centuries, remains ambiguous, the film proposes that our attempts to decode them may themselves become encoded in their cumulative meaning for future researchers.