978 resultados para program structure
Resumo:
Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.
Resumo:
Some progress in the research of GaN based LED with photonic crystal structure has been made recently. Based on the photonic crystal's photonic band gap effect and photon grating diffraction principle, the extraction efficiency of LED with photonic crystal can be improved. In this paper, the restriction on AlGaInP LED's extraction efficiency is analyzed, and the photonic crystal is introduced in to the AlGaInP LED to improve the extraction efficiency. The theoretical analyses and the experiment results show that the output luminous intensity of LED with photonic crystal is improved by 16%, which results from some effect of the GaN based LED with photonic crystal.
Resumo:
Microphotoluminescence (mu-PL) investigation has been performed at room temperature on InAs quantum dot (QD) vertical cavity surface emitting laser (VCSEL) structure in order to characterize the QD epitaxial structure which was designed for 1.3 mu m wave band emission. Actual and precise QD emission spectra including distinct ground state (GS) and excited state (ES) transition peaks are obtained by an edge-excitation and edge-emission (EEEE) mu-PL configuration. Conventional photoluminescence methods for QD-VCSELs structure analysis are compared and discussed, which indicate the EEEE mu-PL is a useful tool to determine the optical features of the QD active region in an as-grown VCSEL structure. Some experimental results have been compared with simulation results obtained with the aid of the plane-wave admittance method. After adjustment of epitaxial growth according to EEEE mu-PL measurement results, QD-VCSEL structure wafer with QD GS transition wavelength of 1300 nm and lasing wavelength of 1301 nm was obtained.
Resumo:
We have achieved in-situ Si incorporation into cubic boron nitride (c-BN) thin films during ion beam assisted deposition. The effects of silicon incorporation on the composition, structure and electric conductivity of c-BN thin films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrical measurements. The results suggest that the content of the cubic phase remains stable on the whole with the incorporation of Si up to a concentration of 3.3 at.%, and the higher Si concentrations lead to a gradual change from c-BN to hexagonal boron nitride. It is found that the introduced Si atoms only replace B atoms and combine with N atoms to form Si-N bonds, and no evidence of the existence of Si-B bonds is observed. The resistance of the Si-doped c-BN films gradually decreases with increasing Si concentration, and the resistivity of the c-BN film with 3.3 at.% Si is lowered by two orders of magnitude as compared to undoped samples.
Resumo:
The deformation of [0001]-oriented ZnO nanorods with hexagonal cross sections under uniaxial tensile loading is analyzed through molecular statistical thermodynamics (MST) simulations. The focus is on the size dependence of mechanical behavior in ZnO nanorods with diameters ranging from 1.95 to 17.5 nm. An irreversible phase transformation from the wurtzite (P6(3)mc space group) structure to a tetragonal structure (P4(2)/mnm space group) occurs during the tensile loading process. Young's modulus before the transformation demonstrates a size dependence consistent with what is observed in experiments. A stronger size dependence of response is seen after the transformation and is attributed to the polycrystalline nature of the transformed structure. A comparison of the MST and molecular dynamics (MD) methods shows that MST is 60 times faster than MD and yields results consistent with the results of MD.
Resumo:
The newly developed multi-quasiparticle triaxial projected shell model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that gamma-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei based on the ground-state to gamma-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I = 10 aligning states in Ce-134 and both exhibiting a neutron character. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Extended quark distribution functions are presented obtained by fitting a large amount of experimental data of the l-A DIS process on the basis of an improved nuclear density model. The experimental data of l-A DIS processes with A >= 3 in the region 0.0010 <= x <= 0.9500 axe quite satisfactorily described by using the extended formulae. Our knowledge of the influence of nuclear matter on the quark distributions is deepened.
Resumo:
The structure of neutron-rich Cr isotopes is systematically investigated by using the spherical shell model. The calculations reproduce well the known energy levels for the even-even Cr52-62 and odd-mass Cr53-59 nuclei, and predict a lowering of excitation energies around neutron number N = 40. The calculated B(E2; 2(1)(+) -> 0(1)(+)) systematics shows a pronounced collectivity around N = 40; a similar characteristic behavior has been suggested for Zn and Ge isotopes. Causes for the sudden drop of the 9/2(1)(+) energy in Cr-59 and the appearance of very low 0(2)(+) states around N = 40 are discussed. We also predict a new band with strong collectivity built on the 0(2)(+) state in the N = 40 isotope Cr-64.
Resumo:
The longitudinal momentum distribution (P-//) of fragments after one-proton removal from Al-23 and reaction cross sections (sigma(R)) for Al-23,Al-24 on carbon target at 74A MeV have been measured simultaneously. An enhancement in sigma(R) is observed for Al-23 compaxed with Al-24. The full width at half maximum of the P-// distribution for Mg-22 fragments has been determined to be 232 +/- 28 MeV/c. Analysis of P-// using the Few-Body Glauber Model indicates a dominant d-wave configuration for the valence proton in the ground state of Al-23. The exotic structure in Al-23 is discussed.
Resumo:
In this paper, a batch file which describes the detailed structure and the corresponding physical process of Micro-Mesh Gaseous Structure (Micromegas) detector, the macro commands and the control structures based on the Garfield program has been developed. And using the Garfield program controlled by this batch file, the detector's gain and spatial resolution have been investigated under different conditions. These results obtained by the simulation program not only exhibit the influences of the mesh and drift voltage, the mixture gas proportion, the distance between the mesh cathode and the printed circuit board readout anode, and the Lines Per Inch of the mesh cathode on the gain and spatial resolution of the detector, but also are very important to optimize the design, shorten the experimental period, and save cost during the detector development. Additionally, they also indicate that the Garfield program is a powerful tool for the Micromegas detector design and optimization.
Resumo:
An advanced superconducting ECR ion source named SECRAL has been constructed at Institute of Modern Physics of Chinese Academy of Sciences, whose superconducting magnet assembly consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamp. In order to investigate the structure of sextupole coils and to increase the structural reliabilities of the magnet system, global and local structural analysis have been performed in various operation scenarios. Winding pack and support structure design of magnet system, mechanical calculation and stress analysis are given in this paper. From the analysis results, it has been found that the magnet system is safe in the referential operation scenarios and the configuration of the magnet complies with design requirements of the SECRAL.
Resumo:
The axially deformed relativistic mean field theory with the force NLSH has been performed in the blocked BCS approximation to investigate the proper-ties and structure of N=Z nuclei from Z=20 to Z=48. Some ground state quantities such as binding energies, quadrupole deformations, one/two-nucleon separation energies, root-mean-squaxe (rms) radii of charge and neutron, and shell gaps have been calculated. The results suggest that large deformations can be found in medium-heavy nuclei with N=Z=38-42. The charge and neutron rms radii increase rapidly beyond the magic number N=Z=28 until Z=42 with increasing nucleon number, which is similar to isotope shift, yet beyond Z=42, they decrease dramatically as the structure changes greatly from Z=42 to Z=43. The evolution of shell gaps with proton number Z can be clearly observed. Besides the appearance of possible new shell closures, some conventional shell closures have been found to disappear in some region. In addition, we found that the Coulomb interaction is not strong enough to breakdown the shell structure of protons in the current region.
Resumo:
A nickel molybdenum phosphate, (NH3CH2CH2NH3)(4).(NH3CH2CH2NH2). Na .[Ni2Mo12O30(PO4)(HPO4)(4)(H2PO4)(3)]. 6H(2)O, invoicing molybdenum present in V oxidation, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a = 12,011(2), b = 14,612(3), c = 21.252(4) Angstrom, alpha = 80.54(2)degrees, beta = 83.10(2)degrees, gamma = 76.29(2)degrees, V = 3561.4(12) Angstrom(3), Z = 2, lambda(MoK alpha) = 0.71073 Angstrom (R(F) = 0.0529 for 9880 reflections), Data mere collected on a Siemens P4 diffractometer at 20 degrees C in the range of 1.75 degrees < theta < 23.02 degrees using the omega-scan technique. The structure was solved by direct methods using the program SHELXTL-93 and refined with the method of fun-matrix least-squares on F-2. The structure of the title compound may be considered to be two [Mo6O15(HPO4)(H2PO4)(3)](5-) units bonded together with a nickel atom, although several P-O groups are not protonated on account of coordination with a Na+ cation, The one-dimensional tunnels were formed in the solid of the title compound. A probe reaction of the oxidation of acetaldehyde with H2O2 using the title compound as catalyst was carried out in a liquid- solid system, showing that the title compound had high catalytic activity in the reaction, (C) 1999 Academic Press.
Resumo:
Introducing function sharing into designs allows eliminating costly structure by adapting existing structure to perform its function. This can eliminate many inefficiencies of reusing general componentssin specific contexts. "Redistribution of intermediate results'' focuses on instances where adaptation requires only addition/deletion of data flow and unused code removal. I show that this approach unifies and extends several well-known optimization classes. The system performs search and screening by deriving, using a novel explanation-based generalization technique, operational filtering predicates from input teleological information. The key advantage is to focus the system's effort on optimizations that are easier to prove safe.
Resumo:
Artificial Intelligence research involves the creation of extremely complex programs which must possess the capability to introspect, learn, and improve their expertise. Any truly intelligent program must be able to create procedures and to modify them as it gathers information from its experience. [Sussman, 1975] produced such a system for a 'mini-world'; but truly intelligent programs must be considerably more complex. A crucial stepping stone in AI research is the development of a system which can understand complex programs well enough to modify them. There is also a complexity barrier in the world of commercial software which is making the cost of software production and maintenance prohibitive. Here too a system which is capable of understanding complex programs is a necessary step. The Programmer's Apprentice Project [Rich and Shrobe, 76] is attempting to develop an interactive programming tool which will help expert programmers deal with the complexity involved in engineering a large software system. This report describes REASON, the deductive component of the programmer's apprentice. REASON is intended to help expert programmers in the process of evolutionary program design. REASON utilizes the engineering techniques of modelling, decomposition, and analysis by inspection to determine how modules interact to achieve the desired overall behavior of a program. REASON coordinates its various sources of knowledge by using a dependency-directed structure which records the justification for each deduction it makes. Once a program has been analyzed these justifications can be summarized into a teleological structure called a plan which helps the system understand the impact of a proposed program modification.