939 resultados para process parameter monitoring


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymer extrusion is regarded as an energy-intensive production process, and the real-time monitoring of both energy consumption and melt quality has become necessary to meet new carbon regulations and survive in the highly competitive plastics market. The use of a power meter is a simple and easy way to monitor energy, but the cost can sometimes be high. On the other hand, viscosity is regarded as one of the key indicators of melt quality in the polymer extrusion process. Unfortunately, viscosity cannot be measured directly using current sensory technology. The employment of on-line, in-line or off-line rheometers is sometimes useful, but these instruments either involve signal delay or cause flow restrictions to the extrusion process, which is obviously not suitable for real-time monitoring and control in practice. In this paper, simple and accurate real-time energy monitoring methods are developed. This is achieved by looking inside the controller, and using control variables to calculate the power consumption. For viscosity monitoring, a ‘soft-sensor’ approach based on an RBF neural network model is developed. The model is obtained through a two-stage selection and differential evolution, enabling compact and accurate solutions for viscosity monitoring. The proposed monitoring methods were tested and validated on a Killion KTS-100 extruder, and the experimental results show high accuracy compared with traditional monitoring approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is an increasing interest in the biomedical field to create implantable medical devices to provide a temporary mechanical function for use inside the human body. In many of these applications bioresorbable polymer composites using PLLA with β-TCP , are increasingly being used due to their biocompatability, biodegradability and mechanical strength.1,3 These medical devices can be manufactured using conventional plastics processing methods such as injection moulding and extrusion, however there is great need to understand and control the process due to a lack of knowledge on the influence of processing on material properties. With the addition of biocompatible additives there is also a requirement to be able to predict the quality and level of dispersion within the polymer matrix. On-line UV-Vis spectroscopy has been shown to monitor the quality of fillers in polymers. This can eliminate time consuming and costly post-process evaluation of additive dispersion. The aim of this work was to identify process and performance relationships of PLLA/β-TCP composites with respect to melt-extrusion conditions. This is part of a wider study into on-line process monitoring of bioresorbable polymers as used in the medical industry.
These results show that final properties of the PLLA/ β-TCP composite are highly influenced by the particle size and loading. UV-Vis spectroscopy can be used on-line to monitor the final product and this can be utilised as a valuable tool for quality control in an application where consistent performance is of paramount importance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The challenge on implementation of the EU Water Framework Directive (WFD) fosters the development of new monitoring methods and approaches. It is now commonly accepted that the use of classical monitoring campaigns in discrete point is not sufficient to fully assess and describe a water body. Due to this the WFD promote the use of modelling techniques in surface waters to assist all phases of the process, from characterisation and establishment of reference conditions to identification of pressures and assessment of impact. The work presented in this communication is based on these principles. A classical monitoring of the water status of the main transitional water bodies of Algarve (south of Portugal) is combined with advanced in situ water profiling and hydrodynamic, water quality and ecological modelling of the systems to build a complete description of its state. This approach extends spatially and temporally the resolution of the classical point sampling. The methodology was applied during a 12 month program in Ria Formosa coastal lagoon, the Guadiana estuary and the Arade estuary. The synoptic profiling uses an YSI 6600 EDS multi-parameter system attached to a boat and a GPS receiver to produce monthly synoptic maps of the systems. This data extends the discrete point sampling with laboratory analysis performed monthly in several points of each water body. The point sampling is used to calibrate the profiling system and to include variables, such as nutrients, not measured by the sensors. A total of 1427 samplings were performed for physical and chemical parameters, chlorophyll and microbiologic contamination in the water column. This data is used to drive the hydrodynamic, transport and ecological modules of the MOHID water modelling system (www.mohid.com), enabling an integrate description of the water column.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Remote monitoring of a power boiler allows the supplying company to make sure that equipment is used as supposed to and gives a good chance for process optimization. This improves co-operation between the supplier and the customer and creates an aura of trust that helps securing future contracts. Remote monitoring is already in use with recovery boilers but the goal is to expand especially to biomass-fired BFB-boilers. To make remote monitoring possible, data has to be measured reliably on site and the link between the power plant and supplying company’s server has to work reliably. Data can be gathered either with the supplier’s sensors or with measurements originally installed in the power plant if the plant in question is not originally built by the supplying company. Main goal in remote monitoring is process optimization and avoiding unnecessary accidents. This can be achieved for instance by following the efficiency curves and fouling in different parts of the process and comparing them to past values. The final amount of calculations depends on the amount of data gathered. Sudden changes in efficiency or fouling require further notice and in such a case it’s important that dialogue toward the power plant in question also works.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate. EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide. CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon = 65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer`s law is obeyed in a 1 x 10(-6) to 2 x 10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 x 10(-7) mol L(-1), corresponding to 38 mu g L. At flow rates of 200 mu L min(-1) of the donor stream and 100 mu L min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 mu L injections of 1 x 10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. (C) 2010 Elsevier By. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have introduced an in-situ Raman monitoring technique to investigate the crystallization process inside protein drops. In addition to a conventional vapour-diffusion process, a novel procedure which actively stimulates the evaporation from a protein drop during crystallization was also evaluated, with lysozyme as a model protein. In contrast to the conventional vapour-diffusion condition, the evaporation-stimulated growth of crystals was initiated in a simple dehydration scheme and completed within a significantly shorter time. To gain an understanding of crystallization behaviours under the conditions with and without such evaporation stimulation, confocal Raman spectroscopy combined with linear regression analysis was used to monitor both lysozyme and HEPES buffer concentrations in real time. The confocal measurements having a high spatial resolution and good linear response revealed areas of local inhomogeneity in protein concentration when the crystallization started. The acquired concentration profiles indicated that (1)ÿthe evaporation-stimulated crystallization proceeded with protein concentrations lower than those under conventional vapour diffusion, and (2)ÿcrystals under the evaporation-stimulated condition were noticeable within an early stage of crystallization before the protein concentration approached its maximum value. The HEPES concentration profiles, on the other hand, increased steadily towards the end of the process regardless of the conditions used for crystallization. In particular, the observed local inhomogeneities specific to protein distribution suggested an accumulation mechanism of protein molecules that initiates the nucleation of crystals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tool condition monitoring is an important factor in ensuring manufacturing efficiency and product quality. Audio signal based methods are a promising technique for condition monitoring. However, the influence of interfering signals and background noise has hindered the use of this technique in production sites. Blind signal separation (BSS) has the potential to solve this problem by recovering the signal of interest out of the observed mixtures, given that the knowledge about the BSS model is available. In this paper, we discuss the development of the BSS model for sheet metal stamping with a mechanical press system, so that the BSS techniques based on this model can be developed in future. This involves conducting a set of specially designed machine operations and developing a novel signal extraction technique. Also, the link between stamping process conditions and the extracted audio signal associated with stamping was successfully demonstrated by conducting a series of trials with different lubrication conditions and levels of tool wear.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed to evaluate laser fluorescence (LF) for monitoring the initial stage of subsurface de- and remineralization (<150 mu m depth). Ninety-six sound blocks of bovine enamel, selected according to surface hardness (SH) and LF were used in two experimental studies, in vitro and in situ. In vitro, blocks were exposed to a demineralizing solution, then remineralized by pH cycling for 6 days. In situ, 10 volunteers wore acrylic palatal appliances, each containing 4 dental enamel blocks that were demineralized for 14 days by exposure to 20% sucrose solution. Following this treatment, blocks were submitted to remineralization for 1 week with fluoride dentifrice (1,100 mu g F/g). In both experiments, SH and LH were measured after demineralization and after remineralization. Further, enamel blocks were selected after the demineralization/remineralization steps for measurement of cross-sectional hardness and integrated loss of subsurface hardness (Delta KHN). SH and Delta KHN showed significant differences among the phases in each study. LF values for sound, demineralized and remineralized enamel were: 5.2 +/- 1.1, 8.1 +/- 1.2 and 5.6 +/- 0.8, respectively, in the in vitro study, and 5.3 +/- 0.3, 16.5 +/- 4.7 and 6.5 +/- 2.5, respectively, in the in situ study, values for demineralized enamel being significantly higher than for sound and remineralized enamel in both studies. However, LF was correlated with Delta KHN only in situ. LF was capable of monitoring de- and remineralization in early lesions in situ, when bacteria are presumably present in the caries lesion body, but is not correlated with mineral changes in bacteria-free systems. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recovery of the pharmaceuticals bezafibrate and tetracycline from water was evaluated, using Solid Phase Extraction (SPE) with the aim of applying this technique to interrupt the pharmaceuticals' photodegradation by photo-Fenton process for further analysis. Sep-Pack C-18, Strata X, and Oasis HLB cartridges were evaluated. Oasis HLB showed the most satisfactory recovery and repeatability results: 98% (CV - 1%) for bezafibrate (20.0 mg L-1) and 76% (CV = 1%) for tetracycline (25.0 mg L-1). There was not a significant decrease in recovery at lower concentrations of the pharmaceuticals, and neither when present in Sewage Treatment Plant (STP) effluent matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A significant part of film production by the coating industry is based on wet bench processes, where better understanding of their temporal dynamics could facilitate control and optimization. In this work, in situ laser interferometry is applied to study properties of flowing liquids and quantitatively monitor the dip coating batch process. Two oil standards Newtonian, non-volatile, with constant refractive indices and distinct flow properties - were measured under several withdrawing speeds. The dynamics of film physical thickness then depends on time as t(-1/2), and flow characterization becomes possible with high precision (linear slope uncertainty of +/-0.04%). Resulting kinematic viscosities for OP60 and OP400 are 1,17 +/- 0,03. St and 9,9 +/- 0,2 St, respectively. These results agree with nominal values, as provided by the manufacturer. For more complex films (a multi-component sol-gel Zirconyl Chloride aqueous solution) with a varying refractive index, through a direct polarimetric measurement, allowing also determination of the temporal evolution of physical thickness (uncertainty of +/- 0,007 microns) is also determined during dip coating.