998 resultados para problema matematiko ez estandarra
Resumo:
El último de los problemas propuesto a los lectores en el Tratado de Huygens, publicado por primera vez en 1657, es hoy día conocido como el problema de la ruina del jugador. Dicho problema consiste en calcular la probabilidad de que un jugador arruine al contrario en un juego a un número indeterminado de partidas, cuando los dos jugadores inician el juego con un cierto número de monedas cada uno. A priori, su enunciado asusta cuando se enfrenta por primera vez, pero puede ser un buen recurso didáctico para profesores que enseñan cálculo de probabilidades a estudiantes de un determinado nivel, dada la resolución elegante y cómoda que se dispone, sin necesidad de un gran aparato matemático. La autoría del problema, tradicionalmente asignada a Huygens, la resolución de éste, la de De Moivre de 1712, así como una resolución más actual y cercana al estudiante del mismo, forman parte del contenido de este artículo.
Resumo:
El pasado 15 de abril se cumplían 300 años del nacimiento de uno de los cuatro matemáticos más geniales de la historia, Leonhard Euler. Para mí, los otros tres, y que cada cual elija su orden, son Arquímedes, Newton y Gauss. Si la calificación la hiciésemos atendiendo a la cantidad de los trabajos de primer orden realizados por cada uno de ellos, sin duda Euler ocuparía el primer lugar. A lo largo de su extensa vida Euler produjo más de ochocientos libros y miles de artículos y trabajos. Sus obras completas Opera Omnia ocupan más de 80 volúmenes. Sin lugar a dudas es el matemático más prolífico de la Historia. Pero, con ser importante la cantidad de trabajos, el aprecio de los matemáticos contemporáneos y posteriores a él se debe más a la riqueza, originalidad, belleza y genial agudeza de su obra que a su volumen.
Resumo:
El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.
Resumo:
Todo tiene un final, incluso una etapa de progreso y buen haber como este último periodo de nuestra querida suma. Emilio y Julio cumplido de sobra y pasan el testigo. Sirvan estas líneas introductoriass a nuestra también última entrega isoperimétrica para mostrarle nuestro reconocimiento. Sobresaliente, cum laude por unanimidad, amigos.
Resumo:
Hemos dejado para el final aquella resolución por la que comienza la mayoría del profesorado de matemáticas: la basada en el uso del cálculo diferencial. Siempre que hemos propuesto el problema que planteábamos en la primera entrega en algún curso o seminario, la forma de abordarlo ha sido echando mano de las derivadas para la búsqueda de extremos de determinada función área. Como se habla de enmarcar un cuadro de 3 m de perímetro, siempre han comenzado pensando en formas rectangulares, por lo que el problema que se planteaban solía ser el siguiente: entre todos los rectángulos de igual perímetro P, el cuadrado de lado P/4 es el que encierra la mayor área.
Resumo:
A lo largo de la historia han existido una serie de problemas que han intrigado, a la vez, frustrado los matemáticos de todos los tiempos. Algunos de ellos siguen sin resolverse y otros como problemas isoperimétricos del que venimos preocupándonos desde el número 33 de suma tan sencillo de enunciar y sin embargo tan difícil de demostrar, se resolvieron tras siglos de esfuerzo. Cuando decimos anterior lo hacemos teniendo muy en cuenta lo que tal afirmación significa. Es decir, resolver un problema no consiste sólo en dar una solución sino demostrar que tal solución existe. De esta cuestión nos ocupamos ahora.
Resumo:
El problema de los puntos, –que ya habían abordado autores, como Pacioli, Tartaglia y Cardano–, es un problema de decisión bajo incertidumbre, que motivó la correspondencia entre Pascal y Fermat en 1654. Ahora bien, en la primera carta que escribe Pascal a Fermat, introduce un nuevo problema sobre dados, también de decisión bajo incertidumbre, «el problema de las partidas no jugadas», que ha motivado el presente trabajo. Aunque más sencillo que el problema de los puntos, ambos tienen cosas en común. Fermat aportará soluciones a estos problemas basadas en la enumeración de todos los posibles resultados, lo que Pascal denomina «el método combinatorio». Al tratar de evitar las enumeraciones de todos los resultados, Pascal descubrirá lo que llamó «método universal»: la esperanza matemática. Igualmente, y a requerimientos de Pascal, Fermat, descubrirá lo que llamamos el modelo de Pascal o modelo geométrico. En el presente trabajo aplicamos estos nuevos métodos al problema de las partidas no jugadas, lo que permitirá apreciar el trabajo que desarrollaron ambos matemáticos.
Resumo:
¿cuál es el camino más corto entre dos puntos del plano? ¿Y del espacio? ¿Y sobre una superficie cualquiera? ¿Qué forma tiene el tobogán más rápido? ¿Cuál es la curva plana que encierra mayor área entre todas las que tienen una misma longitud?
Resumo:
Siempre me ha interesado la historia de las matemáticas cuando la resolución de problemas ha sido su columna vertebral. Ahora que estamos en el 2000, tenemos muy presente aquella famosa lista de 23 problemas dados por Hilbert hace 100 años.
Resumo:
Este articulo lo presento como humilde homenaje a Rafael Montoya (profesor, matemático, ajedrecista, amigo). Nos conocimos jóvenes estudiantes, en Ceuta y compartimos durante muchos años largas horas jugando al ajedrez; resolviendo problemas de matemáticas, de ajedrez o de ingenio; preparando oposiciones; o, simplemente, charlando, conviviendo.
Resumo:
Este articulo ilustra cómo un problema ambiguamente formulado admite diferentes lecturas y soluciones, permitiendo así distintas aproximaciones según el nivel y las capacidades del alumno. El problema de optimización es explorado en un entorno de geometría dinámica (The Geometer's Sketchpad). Esta aproximación geométrica facilita la formulación de conjeturas y su prueba visual, allanando el camino a la prueba analítica, si ésta se considera pertinente.
Resumo:
Usualmente, los problemas de ingenio (puzles) han sido considerados ejemplos motivadores para la enseñanza de la programación. Muchos autores han defendido el lenguaje PROLOG como un primer acercamiento a la programación y a las ciencias de la computación.
Resumo:
En este artículo se recoge brevemente el contenido y resultado de una experiencia llevada a cabo en clase, con un grupo de alumnos de 4.° curso de ESO. Se plantea el problema inicial de la evolución de un grupo de peces en una charco se obtiene un modelo matemático simple (la llamada función logística), que aproxima el problema, y después se estudian algunos casos interesantes de los que se obtienen diversos comportamientos, tanto regulares como caóticos.
Resumo:
Con frecuencia, al leer el encabezamiento de un artículo, el lector intenta hacerse una idea aproximada de lo que puede estar escrito bajo él, aunque no siempre coincida con lo que realmente hay. Para evitar que esto ocurra entre nosotros, y dado que el título resulta bastante genérico, trataré de introducirle con unos breves comentarios, de manera que si no se siente interesado pueda pasar al próximo artículo. Pero si es un aficionado a los problemas de pasatiempos, o le gusta entretenerse en averiguar" cómo otra gente resuelve problemas, o quiere reflexionar sobre el propio pensamiento cuando es usted el resolutor, o está preocupado en líneas generales por la enseñanza, deténgase un momento y concédame un margen de confianza. Esto quizá le pueda interesar.
Resumo:
Se presenta el problema original de la Reina Dido y se hace un recuento de los intentos de solución del problema isoperimétrico a lo largo de muchos siglos.