955 resultados para primary airway epithelial cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human T-lymphotropic virus type-1 (HTLV-1) is the cause of adult T cell leukaemias/lymphoma. Because thymic epithelial cells (TEC) express recently defined receptors for the virus, it seemed conceivable that these cells might be a target for HTLV-1 infection. We developed an in vitro co-culture system comprising HTLV-1+-infected T cells and human TECs. Infected T cells did adhere to TECs and, after 24 h, the viral proteins gp46 and p19 were observed in TECs. After incubating TECs with culture supernatants from HTLV-1+-infected T cells, we detected gp46 on TEC membranes and the HTLV-1 tax gene integrated in the TEC genome. In conclusion, the human thymic epithelium can be infected in vitro by HTLV-1, not only via cell-cell contact, but also via exposure to virus-containing medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corynebacterium pseudodiphtheriticum is a well-known human pathogen that mainly causes respiratory disease and is associated with high mortality in compromised hosts. Little is known about the virulence factors and pathogenesis of C. pseudodiphtheriticum. In this study, cultured human epithelial (HEp-2) cells were used to analyse the adherence pattern, internalisation and intracellular survival of the ATCC 10700 type strain and two additional clinical isolates. These microorganisms exhibited an aggregative adherence-like pattern to HEp-2 cells characterised by clumps of bacteria with a "stacked-brick" appearance. The differences in the ability of these microorganisms to invade and survive within HEp-2 cells and replicate in the extracellular environment up to 24 h post infection were evaluated. The fluorescent actin staining test demonstrated that actin polymerisation is involved in the internalisation of the C. pseudodiphtheriticum strains. The depolymerisation of microfilaments by cytochalasin E significantly reduced the internalisation of C. pseudodiphtheriticum by HEp-2 cells. Bacterial internalisation and cytoskeletal rearrangement seemed to be partially triggered by the activation of tyrosine kinase activity. Although C. pseudodiphtheriticum strains did not demonstrate an ability to replicate intracellularly, HEp-2 cells were unable to fully clear the pathogen within 24 h. These characteristics may explain how some C. pseudodiphtheriticum strains cause severe infection in human patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have explored in vitro the mechanism by which human immunodeficiency virus, type 1 (HIV-1) induces cell death of primary CD4+ T cells in conditions of productive infection. Although HIV-1 infection primed phytohemagglutinin-activated CD4+ T cells for death induced by anti-CD95 antibody, T cell death was not prevented by a CD95-Fc decoy receptor, nor by decoy receptors of other members of the TNFR family (TNFR1/R2, TRAILR1/R2/OPG, TRAMP) or by various blocking antibodies, suggesting that triggering of death receptors by their cognate ligands is not involved in HIV-induced CD4 T cell death. HIV-1 induced CD4 T cell shrinkage, cell surface exposure of phosphatidylserine, loss of mitochondrial membrane potential (Deltapsim), and mitochondrial release of cytochrome c and apoptosis-inducing factor. A typical apoptotic phenotype (nuclear chromatin condensation and fragmentation) only occurred in around half of the dying cells. Treatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, a broad spectrum caspase inhibitor, prevented nuclear chromatin condensation and fragmentation in HIV-infected CD4+ T cells and in a cell-free system (in which nuclei were incubated with cytoplasmic extracts from the HIV-infected CD4+ T cells). Nevertheless, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone did not prevent mitochondrial membrane potential loss and cell death, suggesting that caspases are dispensable for HIV-mediated cell death. Our findings suggest a major role of the mitochondria in the process of CD4 T cell death induced by HIV, in which targeting of Bax to the mitochondria may be involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure. Here we found that an 18 amino acid peptide, S18, which corresponded to residues G22-A39 of the SPLUNC1 NH2 terminus inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold), while SPLUNC1 protein lacking this region was without effect. S18 did not inhibit the structurally related acid-sensing ion channels, indicating specificity for ENaC. However, S18 preferentially bound to the βENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Unlike control, CF human bronchial epithelial cultures (HBECs) where airway surface liquid (ASL) height was abnormally low (4.2 ± 0.6 μm), addition of S18 prevented ENaC-led ASL hyperabsorption and maintained CF ASL height at 7.9 ± 0.6 μm, even in the presence of neutrophil elastase, which is comparable to heights seen in normal HBECs. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, suggesting that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the S18 peptide suggests that this peptide may be suitable for treating CF lung disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fungal strain Paracoccidioides brasiliensisremains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensismolecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensisuses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable gene silencing by RNA interference (RNAi) can be achieved by expression of small hairpin RNAs (shRNAs) from RNA polymerase III promoters. We have tested lentiviral vectors expressing shRNAs targetting CCR5 in primary CD4 T cells from donors representing various CCR5 and CCR2 genetic backgrounds covering the full spectrum of CCR5 expression levels and permissiveness for HIV-1 infection. A linear decrease in CCR5 expression resulted in a logarithmic decrease in cellular infection, giving up to three logs protection from HIV-1 infection in vitro. Protection was maintained at very high multiplicity of infection. This and other recent reports on RNAi should open a debate about the use of RNAi gene therapy for HIV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intestinal immune system hasthe complex task to protect the sterilecore of the organism against invasion.Most of invasive enterobacteria targetintestinal epithelial cells (IEC) inducingmajor damages to the mucosa.Shigella flexneri, by invading IECand inducing inflammatory responsesof the colonic mucosa, causes bacillarydysentery, a bloody diarrhea thatis endemic worldwide. The mechanismof entry of this bacterium is stilla matter of debate. Mcells participatingin sampling antigens from the gutlumen through Peyers patches arecommonly considered as the primarysite of entry of the bacteria. Once inthe lamina propria, Shigella can invadeIEC via their basolateral poleand spread from cell-to-cell leading tomassive tissue destruction. More recently,data are accumulating demonstratingthat bacteria can also enter thelamina propria directly via IEC, underscoringIEC as another gate of entry.In addition, the protective role ofsecretory IgA (SIgA) produced byplasmocytes of the lamina propria hasbeen established in shigellosis contextbut few is known about its role inmaintaining IEC monolayer integrity.Here, the impact of the bacterium wasstudied using polarized CaCo 2 cellmonolayer apically infected with avirulent strain of S. flexneri eitheralone or complexed with its cognateanti LPS SIgA. Parameters associatedwith the infection process includingcytokine measurements (IL-8, IL-18)and laser scanning confocal microscopydetection of Zonula Occludens-1, a tight junction (TJ) protein werestudied.We demonstrate that bacteriaare able to infect IEC through theirluminal-like pole as well, inducingthe complete disruption of TJ and thedestruction of the whole reconstitutedCaCo-2 cell monolayer. SIgA uponneutralization of bacteria led to themaintenance of TJ supporting IEC integrity,and the modulation of cytokinereleases. Together with anti-inflammatoryproperties of SIgA, thefact that apical bacteria can damagethe IEC without the intervention ofother cells such as Mcells offers newpossibilities in understanding thepathogenic mechanisms involved inshigellosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pro-inflammatory cytokine TNF-α and the female hormone estrogen have been implicated in the pathophysiology of two common gynecological diseases, endometriosis and endometrial adenocarcinoma. Here we describe a novel capacity of TNF-α to activate ER signaling in endometrial epithelial cells. TNF-α induced luciferase expression in the absence and presence of estradiol and also augmented expression of the estrogen-regulated genes c-fos, GREB1, and progesterone receptor. Furthermore, TNF-α mediated ER transcriptional activity is dependent on the Extracellular Regulated Kinase (ERK) 1/2 pathway. Co-treatment with a pure ER antagonist resulted in an inhibition of this TNF-α-induced ERE luciferase activity and gene expression, demonstrating that this cytokine signals through ERs. Additional investigations confirmed that TNF-α acts specifically via ERα. Taken together, these data provide a rationale for the potential use of inhibitors of TNF-α and estrogen production/activity in combination for the treatment of endometrial pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 μM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 μM amiloride and that recombinant αβγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 μM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the β(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thymic positive and negative selection of developing T lymphocytes confronts us with a paradox: How can a T-cell antigen receptor (TCR)-major histocompatibility complex (MHC)/peptide interaction in the former process lead to transduction of signals allowing for cell survival and in the latter induce programmed cell death or a hyporesponsive state known as anergy? One of the hypotheses put forward states that the outcome of a TCR-MHC/peptide interaction depends on the cell type presenting the selecting ligand to the developing thymocyte. Here we describe the development and lack of self-tolerance of CD8(+) T lymphocytes in transgenic mice expressing MHC class I molecules in the thymus exclusively on cortical epithelial cells. Despite the absence of MHC class I expression on professional antigen-presenting cells, normal numbers of CD8(+) cells were observed in the periphery. Upon specific activation, transgenic CD8(+) T cells efficiently lysed syngeneic MHC class I(+) targets in vitro and in vivo, indicating that thymic cortical epithelium (in contrast to medullary epithelium and antigen-presenting cells of hematopoietic origin) is incapable of tolerance induction. Thus, compartmentalization of the antigen-presenting cells involved in thymic positive selection and tolerance induction can (at least in part) explain the positive/negative selection paradox.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thymus develops from the third pharyngeal pouch of the anterior gut and provides the necessary environment for thymopoiesis (the process by which thymocytes differentiate into mature T lymphocytes) and the establishment and maintenance of self-tolerance. It contains thymic epithelial cells (TECs) that form a complex three-dimensional network organized in cortical and medullary compartments, the organization of which is notably different from simple or stratified epithelia. TECs have an essential role in the generation of self-tolerant thymocytes through expression of the autoimmune regulator Aire, but the mechanisms involved in the specification and maintenance of TECs remain unclear. Despite the different embryological origins of thymus and skin (endodermal and ectodermal, respectively), some cells of the thymic medulla express stratified-epithelium markers, interpreted as promiscuous gene expression. Here we show that the thymus of the rat contains a population of clonogenic TECs that can be extensively cultured while conserving the capacity to integrate in a thymic epithelial network and to express major histocompatibility complex class II (MHC II) molecules and Aire. These cells can irreversibly adopt the fate of hair follicle multipotent stem cells when exposed to an inductive skin microenvironment; this change in fate is correlated with robust changes in gene expression. Hence, microenvironmental cues are sufficient here to re-direct epithelial cell fate, allowing crossing of primitive germ layer boundaries and an increase in potency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, using HIV-1-derived lentivectors, we obtained efficient transduction of primary human B lymphocytes cocultured with murine EL-4 B5 thymoma cells, but not of isolated B cells activated by CD40 ligation. Coculture with a cell line is problematic for gene therapy applications or study of gene functions. We have now found that transduction of B cells in a system using CpG DNA was comparable to that in the EL-4 B5 system. A monocistronic vector with a CMV promoter gave 32 +/- 4.7% green fluorescent protein (GFP)+ cells. A bicistronic vector, encoding IL-4 and GFP in the first and second cistrons, respectively, gave 14.2 +/- 2.1% GFP+ cells and IL-4 secretion of 1.3 +/- 0.2 ng/10(5) B cells/24 h. This was similar to results obtained in CD34+ cells using the elongation factor-1alpha promoter. Activated memory and naive B cells were transducible. After transduction with a bicistronic vector encoding a viral FLIP molecule, vFLIP was detectable by FACS or Western blot in GFP+, but not in GFP-, B cells, and 57% of sorted GFP+ B cells were protected against Fas ligand-induced cell death. This system should be useful for gene function research in primary B cells and development of gene therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions between Notch1 receptors on lymphoid progenitors and Delta-like 4 (DL4) ligands on cortical thymic epithelial cells (cTEC) are essential for T cell lineage commitment, expansion, and maturation in the thymus. Using a novel mAb against DL4, we show that DL4 levels on cTEC are very high in the fetal and neonatal thymus when thymocyte expansion is maximal but decrease dramatically in the adult when steady-state homeostasis is attained. Analysis of mutant mouse strains where thymocyte development is blocked at different stages indicates that lymphostromal interactions ("thymus crosstalk") are required for DL4 down-regulation on cTEC. Reconstitution of thymocyte development in these mutant mice further suggests that maturation of thymocytes to the CD4(+)CD8(+) stage and concomitant expansion are needed to promote DL4 down-regulation on cTEC. Collectively, our data support a model where thymic crosstalk quantitatively regulates the rate of Notch1-dependent thymopoiesis by controlling DL4 expression levels on cTEC.