957 resultados para prefrontal cortex (PFC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Recent progress in neuroscience revealed diverse regions of the CNS which moderate autonomic and affective responses. The ventro-medial prefrontal cortex (vmPFC) plays a key role in these regulations. There is evidence that vmPFC activity is associated with cardiovascular changes during a motor task that are mediated by parasympathetic activity. Moreover, vmPFC activity makes important contributions to regulations of affective and stressful situations.This review selectively summarizes literature in which vmPFC activation was studied in healthy subjects as well as in patients with affective disorders. The reviewed literature suggests that vmPFC activity plays a pivotal role in biopsychosocial processes of disease. Activity in the vmPFC might link affective disorders, stressful environmental conditions, and immune function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to induce lucid dreaming. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effect of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) of the left prefrontal cortex (LPFC) on mood in a sham-controlled crossover design. Twenty-five healthy male subjects received HF-rTMS of the LPFC in real and sham conditions. Forty trains (frequency 20 Hz, stimulation intensity 100% of individual motor threshold, train duration 2 s, intertrain interval 28 s) were applied in each session. Mood change from baseline was measured with five visual analog scales (VAS) for sadness, anxiety, happiness, tiredness and pain/discomfort. We were unable to demonstrate significant mood changes from baseline on visual analog scales after either sham or real stimulation of LPFC. There is insufficient evidence to support the general conclusion that HF-rTMS of LPFC has mood effects in healthy volunteers. Future studies should be sham-controlled, have larger sample sizes, and strictly stimulate one single region per session in order to exclude interaction effects with the previous stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Associations between the central serotonergic and γ-aminobutyric acid (GABA) systems play key roles in the prefrontal cortical regulation of emotion and cognition and in the pathophysiology and pharmacotherapy of highly prevalent psychiatric disorders. The goal of this study was to test the effects of common variants of the tryptophan hydroxylase isoform 2 (TPH2) gene on GABA concentration in the prefrontal cortex (PFC) using magnetic resonance spectroscopy. In this study involving 64 individuals, we examined the associations between prefrontal cortical GABA concentration and 12 single nucleotide polymorphisms (SNPs) spanning the TPH2 gene, including rs4570625 (−703 G/T SNP), a potentially functional TPH2 polymorphism that has been associated with decreased TPH2 mRNA expression and panic disorder. Our results revealed a significant association between increased GABA concentration in the PFC and the T-allele frequencies of two TPH2 SNPs, namely rs4570625 (−703 G/T) and rs2129575 (p≤0.0004) and the C-allele frequency of one TPH2 SNP, namely rs1386491 (p = 0.0003) in female subjects. We concluded that rs4570625 (−703 G/T), rs2129575 and rs1386491 play a significant role in GABAergic neurotransmission and may contribute to the sex-specific dysfunction of the GABAergic system in the PFC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). METHODS: The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. RESULTS: Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. CONCLUSION: These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The moral force of impartiality (i.e. the equal treatment of all human beings) is imperative for providing justice and fairness. Yet, in reality many people become partial during intergroup interactions; they demonstrate a preferential treatment of ingroup members and a discriminatory treatment of outgroup members. Some people, however, do not show this intergroup bias. The underlying sources of these inter-individual differences are poorly understood. Here we demonstrate that the larger the gray matter volume and thickness of the dorsomedial prefrontal cortex (DMPFC), the more individuals in the role of an uninvolved third-party impartially punish outgroup and ingroup perpetrators. Moreover, we show evidence for a possible mechanism that explains the impact of DMPFC's gray matter volume on impartiality, namely perspective-taking. Large gray matter volume of DMPFC seems to facilitate equal perspective-taking of all sides, which in turn leads to impartial behavior. This is the first evidence demonstrating that brain structure of the DMPFC constitutes an important source underlying an individual's propensity for impartiality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans are noted for their capacity to over-ride self-interest in favor of normatively valued goals. We examined the neural circuitry that is causally involved in normative, fairness-related decisions by generating a temporarily diminished capacity for costly normative behavior, a 'deviant' case, through non-invasive brain stimulation (repetitive transcranial magnetic stimulation) and compared normal subjects' functional magnetic resonance imaging signals with those of the deviant subjects. When fairness and economic self-interest were in conflict, normal subjects (who make costly normative decisions at a much higher frequency) displayed significantly higher activity in, and connectivity between, the right dorsolateral prefrontal cortex (DLPFC) and the posterior ventromedial prefrontal cortex (pVMPFC). In contrast, when there was no conflict between fairness and economic self-interest, both types of subjects displayed identical neural patterns and behaved identically. These findings suggest that a parsimonious prefrontal network, the activation of right DLPFC and pVMPFC, and the connectivity between them, facilitates subjects' willingness to incur the cost of normative decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human risk taking is characterized by a large amount of individual heterogeneity. In this study, we applied resting-state electroencephalography, which captures stable individual differences in neural activity, before subjects performed a risk-taking task. Using a source-localization technique, we found that the baseline cortical activity in the right prefrontal cortex predicts individual risk-taking behavior. Individuals with higher baseline cortical activity in this brain area display more risk aversion than do other individuals. This finding demonstrates that neural characteristics that are stable over time can predict a highly complex behavior such as risk-taking behavior and furthermore suggests that hypoactivity in the right prefrontal cortex might serve as a dispositional indicator of lower regulatory abilities, which is expressed in greater risk-taking behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decisions require careful weighing of the risks and benefits associated with a choice. Some people need to be offered large rewards to balance even minimal risks, whereas others take great risks in the hope for an only minimal benefit. We show here that risk-taking is a modifiable behavior that depends on right hemisphere prefrontal activity. We used low-frequency, repetitive transcranial magnetic stimulation to transiently disrupt left or right dorsolateral prefrontal cortex (DLPFC) function before applying a well known gambling paradigm that provides a measure of decision-making under risk. Individuals displayed significantly riskier decision-making after disruption of the right, but not the left, DLPFC. Our findings suggest that the right DLPFC plays a crucial role in the suppression of superficially seductive options. This confirms the asymmetric role of the prefrontal cortex in decision-making and reveals that this fundamental human capacity can be manipulated in normal subjects through cortical stimulation. The ability to modify risk-taking behavior may be translated into therapeutic interventions for disorders such as drug abuse or pathological gambling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disruption of function of left, but not right, lateral prefrontal cortex (LPFC) with low-frequency repetitive transcranial magnetic stimulation (rTMS) increased choices of immediate rewards over larger delayed rewards. rTMS did not change choices involving only delayed rewards or valuation judgments of immediate and delayed rewards, providing causal evidence for a neural lateral-prefrontal cortex-based self-control mechanism in intertemporal choice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have shown increased risk taking in healthy individuals after low-frequency repetitive transcranial magnetic stimulation, known to transiently suppress cortical excitability, over the right dorsolateral prefrontal cortex (DLPFC). It appears, therefore, plausible that differential modulation of DLPFC activity, increasing the right while decreasing the left, might lead to decreased risk taking, which could hold clinical relevance as excessively risky decision making is observed in clinical populations leading to deleterious consequences. The goal of the present study was to investigate whether risk-taking behaviors could be decreased using concurrent anodal transcranial direct current stimulation (tDCS) of the right DLPFC, which allows upregulation of brain activity, with cathodal tDCS of the left DLPCF, which downregulates activity. Thirty-six healthy volunteers performed the risk task while they received either anodal over the right with cathodal over the left DLPFC, anodal over the left with cathodal over the right DLPFC, or sham stimulation. We hypothesized that right anodal/left cathodal would decrease risk-taking behavior compared with left anodal/right cathodal or sham stimulation. As predicted, during right anodal/left cathodal stimulation over the DLPFC, participants chose more often the safe prospect compared with the other groups. Moreover, these participants appeared to be insensitive to the reward associated with the prospects. These findings support the notion that the interhemispheric balance of activity across the DLPFCs is critical in decision-making behaviors. Most importantly, the observed suppression of risky behaviors suggests that populations with boundless risk-taking behaviors leading to negative real-life consequences, such as individuals with addiction, might benefit from such neuromodulation-based approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans restrain self-interest with moral and social values. They are the only species known to exhibit reciprocal fairness, which implies the punishment of other individuals' unfair behaviors, even if it hurts the punisher's economic self-interest. Reciprocal fairness has been demonstrated in the Ultimatum Game, where players often reject their bargaining partner's unfair offers. Despite progress in recent years, however, little is known about how the human brain limits the impact of selfish motives and implements fair behavior. Here we show that disruption of the right, but not the left, dorsolateral prefrontal cortex (DLPFC) by low-frequency repetitive transcranial magnetic stimulation substantially reduces subjects' willingness to reject their partners' intentionally unfair offers, which suggests that subjects are less able to resist the economic temptation to accept these offers. Importantly, however, subjects still judge such offers as very unfair, which indicates that the right DLPFC plays a key role in the implementation of fairness-related behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

External circumstances and internal bodily states often change and require organisms to flexibly adapt valuation processes to select the optimal action in a given context. Here, we investigate the neurobiology of context-dependent valuation in 22 human subjects using functional magnetic resonance imaging. Subjects made binary choices between visual stimuli with three attributes (shape, color, and pattern) that were associated with monetary values. Context changes required subjects to deviate from the default shape valuation and to integrate a second attribute in order to comply with the goal to maximize rewards. Critically, this binary choice task did not involve any conflict between opposing monetary, temporal, or social preferences. We tested the hypothesis that interactions between regions of dorsolateral and ventromedial prefrontal cortex (dlPFC; vmPFC) implicated in self-control choices would also underlie the more general function of context-dependent valuation. Consistent with this idea, we found that the degree to which stimulus attributes were reflected in vmPFC activity varied as a function of context. In addition, activity in dlPFC increased when context changes required a reweighting of stimulus attribute values. Moreover, the strength of the functional connectivity between dlPFC and vmPFC was associated with the degree of context-specific attribute valuation in vmPFC at the time of choice. Our findings suggest that functional interactions between dlPFC and vmPFC are a key aspect of context-dependent valuation and that the role of this network during choices that require self-control to adjudicate between competing outcome preferences is a specific application of this more general neural mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates.