907 resultados para power law model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to significant increase in vehicular accident and traffic congestions, vehicle to vehicle (V2V) communication based on the intelligent transport system (ITS) was introduced. However, to carry out efficient design and implementation of a reliable vehicular communication systems,a deep knowledge of the propagation channel characteristics in different environments is crucial, in particular the Doppler and pathloss parameters. Therefore, this paper presents an empirical V2V channel characterization and measurement performed under realistic urban, suburban and highway driving conditions in Brisbane, Australia. Based on Lin Cheng statistical Doppler Model (LCDM), values for the RMS Doppler spread and coherence time due to time selective nature of V2V channels were presented. Also, based on Log-distance power law model, values for the mean pathloss exponent and the standard deviation of shadowing were reported for urban, suburban and highway environments. The V2V channel parameters can be useful to system designers for the purpose of evaluating, simulating and developing new protocols and systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a pathloss characterization for vehicle-to-vehicle (V2V) communications based on empirical data collected from extensive measurement campaign performed under line-of-sight (LOS), non-line-of-sight (NLOS) and varying traffic densities. The experiment was conducted in three different V2V propagation environments: highway, suburban and urban at 5.8GHz. We developed pathloss models for each of the three different V2V environments considered. Based on a log-distance power law model, the values for the pathloss exponent and the standard deviation of shadowing were reported. The average pathloss exponent ranges from 1.77 for highway, 1.68 for the urban to 1.53 for the suburban environment. The reported results can contribute to vehicular network (VANET) simulators and can be used by system designers to develop, evaluate and validate new protocols and system designs under realistic propagation conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach is used to study the global dynamics of regenerative metal cutting in turning. The cut surface is modeled using a partial differential equation (PDE) coupled, via boundary conditions, to an ordinary differential equation (ODE) modeling the dynamics of the cutting tool. This approach automatically incorporates the multiple-regenerative effects accompanying self-interrupted cutting. Taylor's 3/4 power law model for the cutting force is adopted. Lower dimensional ODE approximations are obtained for the combined tool–workpiece model using Galerkin projections, and a bifurcation diagram computed. The unstable solution branch off the subcritical Hopf bifurcation meets the stable branch involving self-interrupted dynamics in a turning point bifurcation. The tool displacement at that turning point is estimated, which helps identify cutting parameter ranges where loss of stability leads to much larger self-interrupted motions than in some other ranges. Numerical bounds are also obtained on the parameter values which guarantee global stability of steady-state cutting, i.e., parameter values for which there exist neither unstable periodic motions nor self-interrupted motions about the stable equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drop formation from single nozzles under pulsed flow conditions in non-Newtonian fluids following the power law model has been studied. An existing model has been modified to explain the experimental data. The flow conditions employed correspond to the mixer—settler type of operation in pulsed sieve-plate extraction columns. The modified model predicts the drop sizes satisfactorily. It has been found that consideration of non-Newtonian behaviour is important at low pulse intensities and its significance decreases with increasing intensity of pulsation. Further, the proposed model for single orifices has been tested to predict the sizes of drops formed from a sieve-plate distributor having four holes, and has been found to predict the sizes fairly well in the absence of coalescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Ru - SiO2 catalyst, the kinetics of methanation of carbon dioxide has been studied. In the temperature range of 320-460-degrees-C a simple power law model is found to predict experimental results with a good agreement over the range of variables studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a timing and broad-band pulse-phase-resolved spectral analysis of the transient Be X-ray binary pulsar 1A 1118-61 observed during its outburst in 2009 January using Suzaku observations. The Suzaku observations were made twice, once at the peak of the outburst, and the other 13 d later at its declining phase. Pulse profiles from both observations exhibit strong energy dependence with several peaks at low energies and a single peak above similar to 10 keV. A weak, narrow peak is detected at the main dip of the pulse profiles from both observations in the energy bands below 3 keV, indicating the presence of a phase-dependent soft excess in the source continuum. The broad-band energy spectrum of the pulsar could be fitted well with a partial covering cut-off power-law model and a narrow iron fluorescence line. We also detect a broad cyclotron feature at similar to 50 keV from both observations which is a feature common for accretion-powered pulsars with high magnetic field strength. The pulse-phase-resolved spectral analysis shows an increase in the absorption column density of the partial covering component, as well as variation in the covering fraction at the dips of the pulse profiles, which naturally explains energy dependence of the same. The cyclotron line parameters also show significant variation with pulse phase with an similar to 10 keV variation in the cyclotron line energy and a variation in depth by a factor of 3. This can be explained either as the effect of different viewing angles of the dipole field at different pulse phases, or due to a more complex underlying magnetic field geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical failure of insulation is known to be an extremal random process wherein nominally identical pro-rated specimens of equipment insulation, at constant stress fail at inordinately different times even under laboratory test conditions. In order to be able to estimate the life of power equipment, it is necessary to run long duration ageing experiments under accelerated stresses, to acquire and analyze insulation specific failure data. In the present work, Resin Impregnated Paper (RIP) a relatively new insulation system of choice used in transformer bushings, is taken as an example. The failure data has been processed using proven statistical methods, both graphical and analytical. The physical model governing insulation failure at constant accelerated stress has been assumed to be based on temperature dependent inverse power law model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite their widespread use, there is a paucity of information concerning the effect of storage on the rheological properties of pharmaceutical gels that contain organic and inorganic additives. Therefore, this study examined the effect of storage (1 month at either 4 or 37 degrees C) on the rheological and mechanical properties of gels composed of either hydroxypropylmethylcellulose (3-5% w/w, HPMC) or hydroxyethylcellulose (3-5% w/w, HEC) and containing or devoid of dispersed organic (tetracycline hydrochloride 2% w/w) or inorganic (iron oxide 0.1% w/w) agents. The mechanical properties were measured using texture profile analysis whereas the rheological properties were analyzed using continuous shear rheometry and modeled using the Power Law model. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing polymer concentration (3-5% w/w) significantly increased the consistency, hardness, compressibility, and adhesiveness of the formulations due to increased polymer chain entanglement. Following storage (I month at 4 and 37 degrees C) the consistency and mechanical properties of additive free HPMC gets (but not HEC gels) increased, due to the time-dependent development of polymer chain entanglements. Incorporation of tetracycline hydrochloride significantly decreased and increased the rheological and mechanical properties of HPMC and HEC gels, respectively. Conversely, the incorporation of iron oxide did not affect these properties. Following storage, the rheological and mechanical properties of HPMC and HEC formulations were markedly compromised. This effect was greater following storage at 37 than at 4 degrees C and, additionally, greater in the presence of tetracycline hydrochloride than iron oxide. It is suggested that the loss of rheological/mechanical structure was due to chain depolymerization, facilitated by the redox properties of tetracycline hydrochloride and iron oxide. These observations have direct implications for the design and formulation of gels containing an active pharmaceutical ingredient. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the measurement, frequency-response modeling and identification, and the corresponding impulse time response of the human respiratory impedance and admittance. The investigated adult patient groups were healthy, diagnosed with chronic obstructive pulmonary disease and kyphoscoliosis, respectively. The investigated children patient groups were healthy, diagnosed with asthma and cystic fibrosis, respectively. Fractional order (FO) models are identified on the measured impedance to quantify the respiratory mechanical properties. Two methods are presented for obtaining and simulating the time-domain impulse response from FO models of the respiratory admittance: (i) the classical pole-zero interpolation proposed by Oustaloup in the early 90s, and (ii) the inverse discrete Fourier Transform (DFT). The results of the identified FO models for the respiratory admittance are presented by means of their average values for each group of patients. Consequently, the impulse time response calculated from the frequency response of the averaged FO models is given by means of the two methods mentioned above. Our results indicate that both methods provide similar impulse response data. However, we suggest that the inverse DFT is a more suitable alternative to the high order transfer functions obtained using the classical Oustaloup filter. Additionally, a power law model is fitted on the impulse response data, emphasizing the intrinsic fractal dynamics of the respiratory system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological parameters of raisins were obtained after three different drying methods: convective, osmo-convective and solar drying. Compression tests were applied to rehydrated samples by using a Texture Analyzer TAXT2i. A mathematical trick was used to determine the stress and area was calculated along the deformation. A power law model could adequately fit stress-true strain curves and parameters; K (measure of stiffness) and n (solid behavior index) were obtained as a function of water activity between 0.755 to 0.432. Results showed that these parameters were strongly dependent on water activity for all drying methods. The constant K, which indicates the resistance against deformation, increased with decreasing water activity. on the other hand, increasing water activity resulted in higher solid behavior indexes, showing a large deviation from the Hookean behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of edible films are influenced by several factors, including thickness. The purpose of this paper was to study the influence of thickness on the viscoelasticity properties, water vapor permeability, color and opacity of cassava starch edible films. These films were prepared by a casting technique, the film-forming solutions were 1, 2, 3 and 4% (w/v) of starch, heated to 70degreesC. Different thicknesses were obtained by putting 15 to 70 g of each solution on plexiglass plates. After drying at 30degreesC and ambient relative humidity, these samples were placed for 6 days at RH of 75%, at 22degreesC. The sample thicknesses were determined by a digital micrometer (+/-0.001 mm), as the average of nine different points. The viscoelasticity properties were determined by stress relaxation tests with a texture analyser TA.XT2i (SMS), being applied the Burgers model of four parameters. The water vapor permeability was determined with a gravimetric method, and color and opacity were determined using a Miniscan XE colorimeter, operated according to the Hunterlab method. All the tests were carried out in duplicate at 22degreesC. Practically, the four visco-elasticity properties calculated by the Burgers model had the same behavior, increasing with the thickness of all films, according to a power law model. The water vapor permeability and the color difference increased linearly with the thickness (0.013-0.144 mm) of all films prepared with solution of 1 to 4% of starch. on the other hand, the effect of the variation of the thickness over the opacity, was more important in the films with 1 and 2% of starch. It can be concluded that the control of the thickness in the elaboration of starch films by the casting technique is of extreme importance.