988 resultados para portfolio performance
Resumo:
Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.
Resumo:
We evaluate the use of Generalized Empirical Likelihood (GEL) estimators in portfolios efficiency tests for asset pricing models in the presence of conditional information. Estimators from GEL family presents some optimal statistical properties, such as robustness to misspecification and better properties in finite samples. Unlike GMM, the bias for GEL estimators do not increase as more moment conditions are included, which is expected in conditional efficiency analysis. We found some evidences that estimators from GEL class really performs differently in small samples, where efficiency tests using GEL generate lower estimates compared to tests using the standard approach with GMM. With Monte Carlo experiments we see that GEL has better performance when distortions are present in data, especially under heavy tails and Gaussian shocks.
Resumo:
In this paper we examine the relation between ownership structure and operating performance for European maritime firms. Using a sample of 266 firm-year observations, during the period 2002–2004, we provide evidence that operating performance is positively related with foreign held shares and investment corporation held shares, indicating better investor protection from managerial opportunism. We also find no relation between operating performance and employee held shares, suggesting no relation between employee commitment and firms’ economic performance. Furthermore, we find no relation between operating performance and government held shares, indicating that government may not adequately protect shareholders’ interests from managerial opportunism. Finally, we do find a positive relation between operating performance and portfolio held shares for code law maritime firms but not for common law maritime firms. Results are robust after adjusting for various firm and country risk characteristics. Overall, our results on the importance of the ownership structure are new to this setting and add to a large body of evidence linking ownership characteristics to corporate performance.
Resumo:
This is the first study to provide comprehensive analyses of the relative performance of both socially responsible investment (SRI) and Islamic mutual funds. The analysis proceeds in two stages. In the first, the performance of the two categories of funds is measured using partial frontier methods. In the second stage, we use quantile regression techniques.By combining two variants of the Free Disposal Hull (FDH) methods (order-m and order-?) in the first stage of analysis and quantile regression in the second stage, we provide detailed analyses of the impact of different covariates across methods and across different quantiles. In spite of the differences in the screening criteria and portfolio management of both types of funds, variation in the performance is only found for some of the quantiles of the conditional distribution of mutual fund performance. We established that for the most inefficient funds the superior performance of SRI funds is significant. In contrast, for the best mutual funds this evidence vanished and even Islamic funds perform better than SRI.These results show the benefits of performing the analysis using quantile regression.
Resumo:
This is the first study to provide comprehensive analyses of the relative performance of both socially responsible investment (SRI) and Islamic mutual funds. The analysis proceeds in two stages. In the first, the performance of the two categories of funds is measured using partial frontier methods. In the second stage, we use quantile regression techniques. By combining two variants of the Free Disposal Hull (FDH) methods (order- m and order- α) in the first stage of analysis and quantile regression in the second stage, we provide detailed analyses of the impact of different covariates across methods and across different quantiles. In spite of the differences in the screening criteria and portfolio management of both types of funds, variation in the performance is only found for some of the quantiles of the conditional distribution of mutual fund performance. We established that for the most inefficient funds the superior performance of SRI funds is significant. In contrast, for the best mutual funds this evidence vanished and even Islamic funds perform better than SRI. These results show the benefits of performing the analysis using quantile regression. © 2013 Elsevier B.V.
Resumo:
Kralijc’s (1983) purchasing portfolio approach holds that different types of purchases need different sourcing strategies, underpinned by distinct sets of resources and practices. The approach is widely deployed in business and extensively researched, and yet little research has been conducted on how knowledge and skills vary across a portfolio of purchases. This study extends the body of knowledge on purchasing portfolio management, and its application in the strategic development of purchasing in an organization, and on human resource management in the purchasing function. A novel approach to profiling purchasing skills is proposed, which is well suited to dynamic environments which require flexibility. In a survey, experienced purchasing personnel described a specific purchase and profiled the skills required for effective performance in purchasing that item. Purchases were categorized according to their importance to the organization (internally-oriented evaluation of cost and production factors) and to the supply market (externally-oriented evaluation of commercial risk and uncertainty). Through cluster analysis three key types of purchase situations were identified. The skills required for effective purchasing vary significantly across the three clusters (for 22 skills, p<0.01). Prior research shows that global organizations use the purchasing portfolio approach to develop sourcing strategies, but also aggregate analyses to inform the design of purchasing arrangements (local vs global) and to develop their improvement plans. Such organizations would also benefit from profiling skills by purchase type. We demonstrate how the survey can be adapted to provide a management tool for global firms seeking to improve procurement capability, flexibility and performance.
Resumo:
Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. ^ A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: (a) increase the efficiency of the portfolio optimization process, (b) implement large-scale optimizations, and (c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. ^ The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. ^ The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH). ^
Resumo:
The current study applies a two-state switching regression model to examine the behavior of a hypothetical portfolio of ten socially responsible (SRI) equity mutual funds during the expansion and contraction phases of US business cycles between April 1991 and June 2009, based on the Carhart four-factor model, using monthly data. The model identified a business cycle effect on the performance of SRI equity mutual funds. Fund returns were less volatile during expansion/peaks than during contraction/troughs, as indicated by the standard deviation of returns. During contraction/troughs, fund excess returns were explained by the differential in returns between small and large companies, the difference between the returns on stocks trading at high and low Book-to-Market Value, the market excess return over the risk-free rate, and fund objective. During contraction/troughs, smaller companies offered higher returns than larger companies (ci = 0.26, p = 0.01), undervalued stocks out-performed high growth stocks (h i = 0.39, p <0.0001), and funds with growth objectives out-performed funds with other objectives (oi = 0.01, p = 0.02). The hypothetical SRI portfolio was less risky than the market (bi = 0.74, p <0.0001). During expansion/peaks, fund excess returns were explained by the market excess return over the risk-free rate, and fund objective. Funds with other objectives, such as balanced funds and income funds out-performed funds with growth objectives (oi = −0.01, p = 0.03). The hypothetical SRI portfolio exhibited similar risk as the market (bi = 0.93, p <0.0001). The SRI investor adds a third criterion to the risk and return trade-off of traditional portfolio theory. This constraint is social performance. The research suggests that managers of SRI equity mutual funds may diminish value by using social and ethical criteria to select stocks, but add value by superior stock selection. The result is that the performance of SRI mutual funds is very similar to that of the market. There was no difference in the value added among secular SRI, religious SRI, and vice screens.
Resumo:
This thesis discusses socio-political issues worldwide through philosophical approaches to performance, politics and composition. My research also discuss sound decisions which I regard to be simultaneously an outlet for personal expression, as well as a practical tool to inspire a socio-political change in society. Although the latter is paramount to the methodology of the project, the sound cannot be regarded in isolation as a “political composition”. It can only become truly functional in a political sense through interaction with other art forms, within the context of a specific place and time. My portfolio for this project is of two socio-political projects which are my chief concern. The first project concerns the Israeli-Palestinian conflict. I named this project PATH. PATH aims to foster and expand peaceful thought between Jewish and Palestinian civilians in Israel-Palestine. Through performance art, PATH spreads a message of acceptance, unity and brotherhood between our peoples. Above all, PATH demands and end to intolerance, hatred and violence among all the inhabitants of the State of Israel. The second project concerns women’s rights globally. I have realised that although we have come a long way in our struggle for rights for women, great challenges remain. There is a need to unite women and men against a form of oppression that discriminates against 50% of the world’s population. I called this project, For Utopia.
Resumo:
Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: a) increase the efficiency of the portfolio optimization process, b) implement large-scale optimizations, and c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH).
Resumo:
In this study we propose the use of the performance measure distribution rather than its punctual value to rank hedge funds. Generalized Sharpe Ratio and other similar measures that take into account the higher-order moments of portfolio return distributions are commonly used to evaluate hedge funds performance. The literature in this field has reported non-significant difference in ranking between performance measures that take, and those that do not take, into account higher moments of distribution. Our approach provides a much more powerful manner to differentiate between hedge funds performance. We use a non-semiparametric density based on Gram-Charlier expansions to forecast the conditional distribution of hedge fund returns and its corresponding performance measure distribution. Through a forecasting exercise we show the advantages of our technique in relation to using the more traditional punctual performance measures.
Resumo:
This article proposes a three-step procedure to estimate portfolio return distributions under the multivariate Gram-Charlier (MGC) distribution. The method combines quasi maximum likelihood (QML) estimation for conditional means and variances and the method of moments (MM) estimation for the rest of the density parameters, including the correlation coefficients. The procedure involves consistent estimates even under density misspecification and solves the so-called ‘curse of dimensionality’ of multivariate modelling. Furthermore, the use of a MGC distribution represents a flexible and general approximation to the true distribution of portfolio returns and accounts for all its empirical regularities. An application of such procedure is performed for a portfolio composed of three European indices as an illustration. The MM estimation of the MGC (MGC-MM) is compared with the traditional maximum likelihood of both the MGC and multivariate Student’s t (benchmark) densities. A simulation on Value-at-Risk (VaR) performance for an equally weighted portfolio at 1% and 5% confidence indicates that the MGC-MM method provides reasonable approximations to the true empirical VaR. Therefore, the procedure seems to be a useful tool for risk managers and practitioners.
Resumo:
To meet electricity demand, electric utilities develop growth strategies for generation, transmission, and distributions systems. For a long time those strategies have been developed by applying least-cost methodology, in which the cheapest stand-alone resources are simply added, instead of analyzing complete portfolios. As a consequence, least-cost methodology is biased in favor of fossil fuel-based technologies, completely ignoring the benefits of adding non-fossil fuel technologies to generation portfolios, especially renewable energies. For this reason, this thesis introduces modern portfolio theory (MPT) to gain a more profound insight into a generation portfolio’s performance using generation cost and risk metrics. We discuss all necessary assumptions and modifications to this finance technique for its application within power systems planning, and we present a real case of analysis. Finally, the results of this thesis are summarized, pointing out the main benefits and the scope of this new tool in the context of electricity generation planning.
Resumo:
We propose a method denoted as synthetic portfolio for event studies in market microstructure that is particularly interesting to use with high frequency data and thinly traded markets. The method is based on Synthetic Control Method and provides a robust data driven method to build a counterfactual for evaluating the effects of the volatility call auctions. We find that SMC could be used if the loss function is defined as the difference between the returns of the asset and the returns of a synthetic portfolio. We apply SCM to test the performance of the volatility call auction as a circuit breaker in the context of an event study. We find that for Colombian Stock Market securities, the asynchronicity of intraday data reduces the analysis to a selected group of stocks, however it is possible to build a tracking portfolio. The realized volatility increases after the auction, indicating that the mechanism is not enhancing the price discovery process.
Resumo:
The field of use of membranes is wide and ranges from the automotive industry to biomedical uses. Many formulations and compositions find a niche where they are able to improve efficiency, running cost and quality of the product. The aim of this research is to expand GVS’s product portfolio introducing a new membrane formulation. A series of additives were researched and evaluated, adding them to the membrane solutions, which were then cast and characterised using techniques like Scanning Electron Microscopy (SEM), poroscopy, FT-IT ATR and measurements like Water Break Through (WBT), Air Flow (AF), thickness. This study ultimately focused on one additive, which effect on the membranes was studied in various compositions. Interesting insights were also collected on the stability of the polymer solutions over time, which was found to change the membrane properties significantly, mainly affecting airflow and water breakthrough. Properties of the membranes were studied to find possible correlations to the amount of additive. The additive seems however to change the membrane porometry considerably depending on the time of immersion in the water bath. A new procedure to yield uniform unsupported polymeric membranes for tensile tests was developed. The additive was found to reduce elongation at break and decrease tensile strength of the membranes, possibly hinting toward plasticization of the product.