871 resultados para polylactic acid, scaffold, surface modification, vascular grafts, peritoneal cavity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of this two-center study was to evaluate screw-type titanium implants with a chemically modified, sandblasted and acid-etched surface when placed in the posterior maxilla or mandible, and loaded 21 days after placement. MATERIAL AND METHODS: All 56 patients met strict inclusion criteria and provided informed consent. Each patient displayed either a single-tooth gap, an extended edentulous space, or a distal extension situation in the posterior mandible or maxilla. Eighty-nine dental implants (SLActive, Institut Straumann AG, Basel, Switzerland) were inserted according to an established nonsubmerged protocol and underwent undisturbed healing for a period of 21 days. Where appropriate, the implants were loaded after 21 days of healing with provisional restorations in full occlusion. Definitive metal ceramic restorations were fabricated and positioned on each implant after 6 months of healing. Clinical measurements regarding soft tissue parameters and radiographs were obtained at different time points up to 24 months after implant placement. RESULTS: Of the 89 inserted implants, two (2.2%) implants failed to integrate and were removed during healing, and two (2.2%) additional implants required a prolonged healing time. A total of 85 (95.6%) implants were therefore loaded without incident after 21 days of healing. No additional implant was lost throughout the study period, whereas one implant was lost to follow-up and therefore left unaccounted for further analysis. The remaining 86 implants all exhibited favorable radiographic and clinical findings. Based on strict success criteria, these implants were considered successfully integrated 2 years after insertion, resulting in a 2-year success rate of 97.7%. CONCLUSION: The results of this prospective two-center study demonstrate that titanium implants with a modified SLA surface can predictably achieve successful tissue integration when loaded in full occlusion 21 days after placement. Integration could be maintained without incident for at least 2 years of follow-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For dental implants to be successful, osseointegration must occur, but it is unknown how much time must pass for osseointegration to be established. Preclinical studies suggested that titanium implants with a sandblasted and acid-etched (SLA) surface were more osteoconductive and allowed more rapid osseointegration than machined or turned implant surfaces. The hypothesis of this study was that implants with an SLA surface could be loaded in half the conventional healing time of machined-surface implants and that, after loading, the implants would be successful for 5 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This retrospective study assessed the 10-year outcomes of titanium implants with a sandblasted and acid-etched (SLA) surface in a large cohort of partially edentulous patients. Materials and Methods: Records of patients treated with SLA implants between May 1997 and January 2001 were screened. Eligible patients were contacted and invited to undergo a clinical and radiologic examination. Each implant was classified according to strict success criteria. Results: Three hundred three patients with 511 SLA implants were available for the examination. The mean age of the patients at implant surgery was 48 years. Over the 10-year period, no implant fracture was noted, whereas six implants (1.2%) were lost. Two implants (0.4%) showed signs of suppuration at the 10-year examination, whereas seven implants had a history of peri-implantitis (1.4%) during the 10-year period, but presented with healthy peri-implant soft tissues at examination. The remaining 496 implants fulfilled the success criteria. The mean Plaque Index was 0.65 (±0.64), the mean Sulcus Bleeding Index 1.32 (±0.57), the mean Probing Depth 3.27 mm (±1.06), and the mean distance from the implant shoulder to the mucosal margin value -0.42 mm (±1.27). The radiologic mean distance from the implant shoulder to the first bone-to-implant contact was 3.32 mm (±0.73). Conclusion: The present retrospective analysis resulted in a 10-year implant survival rate of 98.8% and a success rate of 97.0%. In addition, the prevalence of peri-implantitis in this large cohort of orally healthy patients was low with 1.8% during the 10-year period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the survival and success rates of immediately restored implants with sandblasted, large-grit, acid-etched (SLA) surfaces over a period of 5 years. Twenty patients (mean age, 47.3 years) received a total of 21 SLA wide-neck implants in healed mandibular first molar sites after initial periodontal treatment. To be included in the study, the implants had to demonstrate primary stability with an insertion torque value of 35 Ncm. A provisional restoration was fabricated chairside and placed on the day of surgery. Definitive cemented restorations were inserted 8 weeks after surgery. Community Periodontal Index of Treatment Needs (CPITN) indices and the radiographic distance between the implant shoulder and the first visible bone-implant contact (DIB) were measured and compared over the study period. The initial mean CPITN was 3.24, and decreased over the study period to 1.43. At the postoperative radiographic examination, the mean DIB was 1.41 mm for the 21 implants, indicating that part of the machined neck of the implants was placed slightly below the osseous crest. The mean DIB value increased to 1.99 mm at the 5-year examination. This increase proved to be statistically significant (P < .0001). Between the baseline and 5-year examinations, the mean bone crest level loss was 0.58 mm. Success and survival rates of the 21 implants after 5 years of function were 100%. This 5-year study confirms that immediate restoration of mandibular molar wide-neck implants with good primary stability, as noted by insertion torque values of at least 35 Ncm, is a safe and predictable procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis investigates the effect of surface treatment with various reducing and oxidizing agents on the quantum yield (QY) of CdSe and CdS quantum dots (QDs). The QDs, as synthesized by the organometallic method, contained defect sites on their surface that trapped photons and prevented their radiative recombination, therefore resulting in adecreased QY. To passivate these defect sites and enhance the QY, the QDs were treated with various reducing and oxidizing agents, including: sodium borohydride (NaBH4), calcium hydride (CaH2), hydrazine (N2H4), benzoyl peroxide (C14H10O4), and tert-butylhydroperoxide (C4H10O2). It was hypothesized that the reducing/oxidizing agents reduced the ligands on the QD surface, causing them to detach, thereby allowing oxygen from atmospheric air to bind to the exposed cadmium. This cadmium oxdide (CdO) layeraround the QD surface satisfied the defect sites and resulted in an increased QY. To correlate what effect the reducing and oxidizing agents were having on the optical properties of the QDs, we investigated these treatments on the following factors:chalcogenide (Se vs. S), ligand (oleylamine vs. OA), coordinating solvent (ODE vs.TOA), and dispersant solvent (chloroform vs. toluene) on the overall optical properties of the QDs. The QY of each sample was calculated before and after the various surface treatments from ultra-violet visible spectroscopy (UV-Vis) and fluorescence spectroscopy data to determine if the treatment was successful.From our results, we found that sodium borohydride was the most effective surface treatment, with 10 of the 12 treatments resulting in an increased QY. Hydrazine, on the other hand, was the least effective treatments, as it quenched the QD fluorescence in every case. From these observations, we hypothesize that the effectiveness of the QD surface treatments was dependent on reaction rate. More specifically, when the surface treatment reaction happened too quickly, we hypothesize that the QDs began to aggregate, resulting in a quenched fluorescence. Furthermore, we believe that the reactionrate is dependent on concentration of the reducing/oxidizing agents, solubility of the agents in each solvent, and reactivity of the agents with water. The quantum yield of the QDs can therefore be maximized by slowing the reaction rate of each surface treatment toa rate that allows for the proper passivation of defect sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polylactic acid (PLA) is a bio-derived, biodegradable polymer with a number of similar mechanical properties to commodity plastics like polyethylene (PE) and polyethylene terephthalate (PETE). There has recently been a great interest in using PLA to replace these typical petroleum-derived polymers because of the developing trend to use more sustainable materials and technologies. However, PLA¿s inherent slow crystallization behavior is not compatible with prototypical polymer processing techniques such as molding and extrusion, and in turn inhibits its widespread use in industrial applications. In order to make PLA into a commercially-viable material, there is a need to process the material in such a way that its tendency to form crystals is enhanced. The industry standard for producing PLA products is via twin screw extrusion (TSE), where polymer pellets are fed into a heated extruder, mixed at a temperature above its melting temperature, and molded into a desired shape. A relatively novel processing technique called solid-state shear pulverization (SSSP) processes the polymer in the solid state so that nucleation sites can develop and fast crystallization can occur. SSSP has also been found to enhance the mechanical properties of a material, but its powder output form is undesirable in industry. A new process called solid-state/melt extrusion (SSME), developed at Bucknell University, combines the TSE and SSSP processes in one instrument. This technique has proven to produce moldable polymer products with increased mechanical strength. This thesis first investigated the effects of the TSE, SSSP, and SSME polymer processing techniques on PLA. The study seeks to determine the process that yields products with the most enhanced thermal and mechanical properties. For characterization, percent crystallinity, crystallization half time, storage modulus, softening temperature, degradation temperature and molecular weight were analyzed for all samples. Through these characterization techniques, it was observed that SSME-processed PLA had enhanced properties relative to TSE- and SSSP-processed PLA. Because of the previous findings, an optimization study for SSME-processed PLA was conducted where throughput and screw design were varied. The optimization study determined PLA processed with a low flow rate and a moderate screw design in an SSME process produced a polymer product with the largest increase in thermal properties and a high retention of polymer structure relative to TSE-, SSSP-, and all other SSME-processed PLA. It was concluded that the SSSP part of processing scissions polymer chains, creating defects within the material, while the TSE part of processing allows these defects to be mixed thoroughly throughout the sample. The study showed that a proper SSME setup allows for both the increase in nucleation sites within the polymer and sufficient mixing, which in turn leads to the development of a large amount of crystals in a short period of time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Conventionally, endosseous dental implants have required 3 to 6 months of uninterrupted healing based on observations for dental implants that were characterized by a relatively smooth machined surface. Many studies have since demonstrated that implants with a roughened surface resulted in greater bone apposition, earlier bone contact, and a stronger bond between the implant and the bone, suggesting that implants with roughened surfaces could be loaded earlier than 3 to 6 months. Formal clinical studies confirmed that implants with rough surfaces can have abutments placed and be loaded occlusally as early as 6 weeks postplacement. The purpose of this prospective, human clinical investigation was to evaluate a large number of implants with a specific rough surface (sand-blasted acid-etched [SLA]) placed in everyday practice under routine private-practice conditions. METHODS: A prospective, multicenter, human clinical observational study was initiated with the goal of recruiting a minimum of 500 patients and 800 implants. The implants were to be placed and restored in predominantly private-practice settings around the world. Ninety-two practitioners in 16 countries agreed to participate, and 86 followed the study design. Patients had to be in good health, have sufficient bone to encase the implant, and agree to return for recall appointments. Exclusion criteria included heavy smoking (>10 cigarettes a day) and bone augmentation procedures at the implant site. All implants were two-piece (an abutment was to be placed after 6 weeks of healing) and were characterized by the presence of a transmucosal polished collar. Each implant had an SLA surface. All implants were positioned using a non-submerged (single-stage) surgical technique. Survival and success rates were calculated by life-table analyses. RESULTS: A total of 706 patients were enrolled and 1,406 implants were placed. In the final analyses, 590 patients with 990 implants (70.4% of those enrolled) met all inclusion criteria, including placement of an abutment and provisional restoration within 63 days of surgical placement. The majority of implants were 10 and 12 mm long (78.7%) and were placed in type II and III bone (87%). Seventy-three percent of the implants were placed in the mandible, and 27% were placed in the maxilla. The cumulative survival rate was 99.56% at 3 years and 99.26% at 5 years. The overall success rate was 99.12% at 3 years and 97.38% after 5 years. CONCLUSIONS: Under private-practice conditions, implants with an SLA surface could be placed and restored predictably within 6 to 8 weeks. Data from this prospective, multicenter, human observational study reinforced the results of more formal clinical studies and demonstrated that implants with the SLA surface can be restored in patients in approximately half of the time of conventional healing periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of this prospective case series study was to evaluate the short-term success rates of titanium screw-type implants with a chemically modified sand-blasted and acid-etched (mod SLA) surface after 3 weeks of healing. MATERIAL AND METHODS: A total of 56 implants were inserted in the posterior mandible of 40 partially edentulous patients exhibiting bone densities of class I to III. After a healing period of 3 weeks, all implants were functionally loaded with a screw-retained crown or fixed dental prosthesis. The patients were recalled at weeks 4, 7, 12, and 26 for monitoring and assessment of clinical and radiological parameters, including implant stability quotient (ISQ) measurements. RESULTS: None of the implants failed to integrate. However, two implants were considered "spinners" at day 21 and left unloaded for an extended period. Therefore, 96.4% of the inserted implants were loaded according to the protocol tested. All 56 implants including the "spinners" showed favorable clinical and radiographic findings at the 6-month follow-up examination. The ISQ values increased steadily throughout the follow-up period. At the time of implant placement, the range of ISQ values exhibited a mean of 74.33, and by week 26, a mean value of 83.82 was recorded. Based on strict criteria, all 56 implants were considered successfully integrated, resulting in a 6-month survival and success rate of 100.0%. CONCLUSION: This prospective study using an early-loading protocol after 3 weeks of healing demonstrated that titanium implants with the modified SLA surface can achieve and maintain successful tissue integration over a period of at least 6 months. The ISQ method seems feasible to monitor implant stability during the initial wound-healing period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering applications. Fetal fluids were aspirated in vivo from pregnant ewes (n = 9) and from explanted uteri post mortem at different gestational ages (n = 91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-derived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3. Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n = 10) and cardiovascular patches (n = 34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Total glycans from the cell layer and the culture medium of human vascular smooth muscle cells (VSMC) that had been cultivated in the presence of platelet-derived growth factor (PDGF) were isolated and purified by gel filtration after Pronase and DNase digestion and alkaliborohydride treatment. Measurements of the content of neutral hexoses and uronic acids revealed that PDGF stimulates total glycan synthesis by proliferating VSMC in a linear fashion from 24 h to 72 h of incubation. In contrast, total glycan synthesis by human fibroblasts, epithelial cells, or endothelial cells was not affected by PDGF, indicating cell-type specificity. Chemical, biochemical, and enzymological characterization of the total glycans synthesized by VSMC showed that PDGF stimulates the secretion of a 340-kDa glycan molecule in a time-dependent manner from 24 h to 72 h. This molecule is highly acidic, shares a common structure with hyaluronic acid, and exhibits a potent antiproliferative activity on VSMC. These results suggest that VSMC in response to PDGF are capable of controlling their own growth and migration by the synthesis of a specific form of hyaluronic acid with antiproliferative potency, which may be involved in the regulation of the local inflammatory responses associated with atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectric barrier discharge (DBD) air plasma is a novel technique for in-package decontamination of food, but it has not been yet applied to the packaging material. Characterization of commercial polylactic acid (PLA) films was done after in-package DBD plasma treatment at different voltages and treatment times to evaluate its suitability as food packaging material. DBD plasma increased the roughness of PLA film mainly at the site in contact with high voltage electrode at both the voltage levels of 70 and 80 kV. DBD plasma treatments did not induce any change in the glass transition temperature, but significant increase in the initial degradation temperature and maximum degradation temperature was observed. DBD plasma treatment did not adversely affect the oxygen and water vapor permeability of PLA. A very limited overall migration was observed in different food simulants and was much below the regulatory limits. Industrial relevance: In-package DBD plasma is a novel and innovative approach for the decontamination of foods with potential industrial application. This paper assesses the suitability of PLA as food packaging material for cold plasma treatment. It characterizes the effect of DBD plasma on the packaging material when used for in-package decontamination of food. The work described in this research offers a promising alternative to classical methods used in fruit and vegetable industries where in-package DBD plasma can serve as an effective decontamination process and avoids any post-process recontamination or hazards from the package itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(lactic acid) PLA, and poly(hydroxybutyrate) PHB, blends were processed as films and characterized for their use in food packaging. PLA was blended with PHB to enhance the crystallinity. Therefore, PHB addition strongly increased oxygen barrier while decreased the wettability. Two different environmentally-friendly plasticizers, poly(ethylene glycol) (PEG) and acetyl(tributyl citrate) (ATBC), were added to these blends to increase their processing performance, while improving their ductile properties. ATBC showed higher plasticizer efficiency than PEG directly related to the similarity solubility parameters between ATBC and both biopolymers. Moreover, ATBC was more efficiently retained to the polymer matrix during processing than PEG. PLA–PHB–ATBC blends were homogeneous and transparent blends that showed promising performance for the preparation of films by a ready industrial process technology for food packaging applications, showing slightly amber color, improved elongation at break, enhanced oxygen barrier and decreased wettability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, one of the most attractive and desirable ways to solve the energy challenge is harvesting energy directly from the sunlight through the so-called artificial photosynthesis. Among the ternary oxides based on earth–abundant metals, bismuth vanadate has recently emerged as a promising photoanode. Herein, BiVO4 thin film photoanodes have been successfully synthesized by a modified metal-organic precursor decomposition method, followed by an annealing treatment. In an attempt to improve the photocatalytic properties of this semiconductor material for photoelectrochemical water oxidation, the electrodes have been modified (i) by doping with La and Ce (by modifying the composition of the BiVO4 precursor solution with the desired concentration of the doping element), and (ii) by surface modification with Au nanoparticles potentiostatically electrodeposited. La and Ce doping at concentrations of 1 and 2 at% in the BiVO4 precursor solution, respectively, enhances significantly the photoelectrocatalytic performance of BiVO4 without introducing important changes in either the material structure or the electrode morphology, according to XRD and SEM characterization. In addition, surface modification of the electrodes with Au nanoparticles further enhances the photocurrent as such metallic nanoparticles act as co-catalysts, promoting charge transfer at the semiconductor/solution interface. The combination of these two complementary ways of modifying the electrodes has resulted in a significant increase in the photoresponse, facilitating their potential application in artificial photosynthesis devices.

Relevância:

100.00% 100.00%

Publicador: