112 resultados para polyamide
Resumo:
Small molecules that specifically bind with high affinity to any designated DNA sequence in the human genome would be useful tools in molecular biology and potentially in human medicine. Simple rules have been developed to rationally alter the sequence specificity of minor groove-binding polyamides containing N-methylimidazole and N-methylpyrrole amino acids. Crescent-shaped polyamides bind as antiparallel dimers with each polyamide making specific contacts with each strand on the floor of the minor groove. Cyclic polyamides have now been synthesized that bind designated DNA sequences at subnanomolar concentrations.
Resumo:
We studied an in vitro model of continuous venous-venous haemofiltration (CVVH), into which levofloxacin 100 mg was infused, to determine levofloxacin adsorption and to determine the effect of filter material and point of dilution (pre- or post-filter) on sieving coefficient. Mean (standard deviation; S.D.) adsorption was 18.7 (5.3) mg for the polyamide filter and 40.2 (2.0) mg for the polyacrylonitrile (PAN) filter (P < 0.001). Post-dilution resulted in a minor, but statistically significant, decrease in sieving coefficient (pre-dilution 0.96 (S.D. 0.10), post-dilution 0.88 (S.D. 0.11) with the PAN filter. These data indicate that the variability in published values for levofloxacin sieving coefficient are not due to variation in point of dilution or membrane type (PAN or polyamide). Significant adsorption of levofloxacin onto PAN filters occurs. (C) 2004 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Ocular neovascularisation is the leading cause of blindness in developed countries and the most potent angiogenic factor associated with neovascularisation is vascular endothelial growth factor (VEGF). We have previously described a sense oligonucleotide (ODN-1) that possesses anti-human and rat VEGF activity. This paper describes the synthesis of lipid-lysine dendrimers and their subsequent ability to delivery ODN-1 to its target and mediate a reduction in VEGF concentration both in vitro and in vivo. Positively charged dendrimers were used to deliver ODN-1 into the nucleus of cultured D407 cells. The effects on VEGF mRNA transcription and protein expression were analysed using RT-PCR and ELISA, respectively. The most effective dendrimers in vitro were further investigated in vivo using an animal model of choroidal neovascularisation (CNV). All dendrimer/ODN-1 complexes mediated in a significant reduction in VEGF expression during an initial 24 hr period (40-60%). Several complexes maintained this level of VEGF reduction during a subsequent, second 24 hr period, which indicated protection of ODN-1 from the effects of endogenous nucleases. In addition, the transfection efficiency of dendrimers that possessed 8 positive charges (chi = 81(.)51%) was significantly better (P = 0(.)0036) than those that possessed 4 positive charges (chi = 56(.)8%). RT-PCR revealed a correlation between levels of VEGF protein mRNA. These results indicated that the most effective structural combination was three branched chains of intermediate length with 8 positive charges such as that found for dendrimer 4. Dendrimer 4 and 7/ODN-1 complexes were subsequently chosen for in vivo analysis. Fluorescein angiography demonstrated that both dendrimers significantly (P < 0(.)0001) reduced the severity of laser mediated CNV for up to two months post-injection. This study demonstrated that lipophilic, charged dendrimer mediated delivery of ODN-1 resulted in the down-regulation of in vitro VEGF expression. In addition, in vivo delivery of ODN-1 by two of the dendrimers resulted in significant inhibition of CNV in an inducible rat model. Time course studies showed that the dendrimer/ODN-1 complexes remained active for up to two months indicating the dendrimer compounds provided protection against the effects of nucleases. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This thesis describes investigations upon pseudopeptides which were conducted to improve our understanding of the fate of synthetic macromolecules in cells and to develop approaches to influence that fate. The low uptake of molecules across the external cellular membrane is the principal barrier against effective delivery of therapeutic products to within the cell structure. In nature, disruption of this membrane by amphiphilic peptides plays a central role in the pathogenesis by bacterial and toxin infections. These amphiphilic peptides contain both hydrophobic and weakly charged hydrophilic amino acid residues and upon activation they become integrated into the lipid bilayers of the extracellular or endosomal membranes. The architectures of the pseudopeptides described here were designed to display similar pH dependent membrane rupturing activity to that of peptides derived from the influenza virus hemagglutinin HA-2. This HA protein promotes fusion of the influenza virus envelope with the cell endosome membrane due to a change in conformation in response to the acidic pH of the endosome lumen (pH 5.0-6.0). The pseudopeptides were obtained by the copolymerisation of L-lysine and L-lysine ethyl-ester with various dicarboxylic acid moieties. In this way a linear polyamide comprising of alternating pendant carboxylic acids and pendant hydrophobic moieties was made. At physiological pH (pH 7.4), electrostatic repulsion of pendant anionic carboxyl groups along the polymer backbone is sufficient to overcome the intramolecular association of the hydrophobic groups resulting in an extended conformation. At low pH (typically pH 4.8) loss of charge results in increased intramolecular hydrophobic association and the polymer chain collapses to a compact conformation, leading to precipitation of the polymer. Consequently, a conformation dependent functional property could be made to respond to small changes in the environmental pH. Pseudopepides were investigated for their cytoxicity towards a well known cell line, namely C26 (colorectal adenocarcinoma) and were shown through the use of a cell viability assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) to be well tolerated by C26 cells over a range of concentrations (2-500,μg/ml) at physiological pH (pH 7.4). A modified version of a shorter 30-minute coupled enzymatic assay, the LDH (lactate dehydrogenase) assay was used to evaluate the ability of the pseudopeptides to disrupt the membrane of two different cell lines (COS-1; African green monkey, kidney and A2780; human ovarian carcinoma) at low pH (pH 5.5). The cell membrane disruption property of the pseudopeptides was successfully demonstrated for COS-I and A2780 cell lines at this pH (pH 5.5). A variety of cell lines were chosen owing to limited availability and to compare the cytotoxic action of these pH responsive psudopeptides towards normal and tumorogenic cell lines. To investigate the intracellular delivery of one of the pseudopeptides, poly (L-lysine iso-phthalamide) and its subcellular location, a Cy3 bisamine fluorophore was conjugated into its backbone, at ratios of dye:lysine of 1:20, 1:30, 1:40, 1:60 and 1:80. Native polyacrylacrylamide gel electrophoresis (PAGE) and high voltage paper electrophoresis (HVPE) studies of the polydyes were conducted and provided evidence that that the Cy3 bisamine fluorophore was conjugated into the backbone of the polymer, poly (L-lysine iso-phthalamide). The subcellular fate of the fluorescentlylabelled "polydye" (hereafter PD20) was monitored by laser scanning confocal microscopy (LSCM) in CHO (Chinese hamster ovary) cells cultured in-vitro at various pH values (pH 7.4 and 5.0). LSCM images depicting time-dependent internalisation of PD20 indicated that PD20 traversed the extracellular membrane of CHO cells cultured in-vitro within ten minutes and migrated towards the endosomal regions where the pH is in the region of 5.0 to 6.0. Nuclear localisation of PD20 was demonstrated in a subpopulation of CHO cells. A further study was completed in CHO and HepG2 (hepatocellular carcinoma) cells cultured in-vitro using a lower molecular weight polymer to demonstrate that the molecular weight of "polydye" could be tailored to attain nuclear trafficking in cells. Prospective use of this technology encompasses a method of delivering a payload into a living cell based upon the hypercoiling nature of the pseudopeptides studied in this thesis and has led to a patent application (GB0228525.2; 20(2).
Resumo:
The thermal oxidation of two model compounds representing the aromatic polyamide, MXD6 (poly m-xylylene adipamide) have been investigated. The model compounds (having different chemical structures, viz, one corresponding to the aromatic part of the chain and the other to the aliphatic part), based on the structure of MXD6 were prepared and reactions with different concentrations of cobalt ions examined with the aim of identifying the role of the different structural components of MXD6 on the mechanism of oxidation. The study showed that cobalt, in the presence of sodium phosphite (which acts as an antioxidant for MXD6 and the model compounds), increases the oxidation of the model compounds. It is believed that the cobalt acts predominantly as a catalyst for the decomposition of hydroperoxides, formed during oxidation of the models in the melt phase, to free radical products and to a lesser extent as a catalyst for the initiation of the oxidation reaction by complex formation with the amide, which is more likely to take place in the solid phase. An oxidation cycle has been proposed consisting of two parts both of which will occur, to some extent under all conditions of oxidation (in the melt and in the solid phase), but their individual predominance must be determined by the prevailing oxygen pressure at the reaction site. The different aspects of this proposed mechanism were examined from extensive model compound studies, and the evidence based on the nature of product formation and the kinetics of these reactions. Main techniques used to compare the rates of oxidation and the study of kinetics included, oxygen absorption, FT-IR, UV and TGA. HPLC was used for product separation and identification.
Resumo:
The effect of organically modified clay on the morphology, rheology and mechanical properties of high-density polyethylene (HDPE) and polyamide 6 (PA6) blends (HDPE/PA6 = 75/25 parts) is studied. Virgin and filled blends were prepared by melt compounding the constituents using a twin-screw extruder. The influence of the organoclay on the morphology of the hybrid was deeply investigated by means of wide-angle X-ray diffractometry, transmission and scanning electron microscopies and quantitative extraction experiments. It has been found that the organoclay exclusively places inside the more hydrophilic polyamide phase during the melt compounding. The extrusion process promotes the formation of highly elongated and separated organoclay-rich PA6 domains. Despite its low volume fraction, the filled minor phase eventually merges once the extruded pellets are melted again, giving rise to a co-continuous microstructure. Remarkably, such a morphology persists for long time in the melt state. A possible compatibilizing action related to the organoclay has been investigated by comparing the morphology of the hybrid blend with that of a blend compatibilized using an ethylene–acrylic acid (EAA) copolymer as a compatibilizer precursor. The former remains phase separated, indicating that the filler does not promote the enhancement of the interfacial adhesion. The macroscopic properties of the hybrid blend were interpreted in the light of its morphology. The melt state dynamics of the materials were probed by means of linear viscoelastic measurements. Many peculiar rheological features of polymer-layered silicate nanocomposites based on single polymer matrix were detected for the hybrid blend. The results have been interpreted proposing the existence of two distinct populations of dynamical species: HDPE not interacting with the filler, and a slower species, constituted by the organoclay-rich polyamide phase, which slackened dynamics stabilize the morphology in the melt state. In the solid state, both the reinforcement effect of the filler and the co-continuous microstructure promote the enhancement of the tensile modulus. Our results demonstrate that adding nanoparticles to polymer blends allows tailoring the final properties of the hybrid, potentially leading to high-performance materials which combine the advantages of polymer blends and the merits of polymer nanocomposites.
Resumo:
A study was made on the effect of small amounts of organically modified clay on the morphology and mechanical properties of blends of low-density polyethylene and polyamide 11 at different compositions. The influence of the filler on the blend morphology was investigated using wide angle X-ray diffractometry, scanning and transmission electron microscopy and selective extraction experiments. The filler was found to locate predominantly in the more hydrophilic polyamide phase. Although such uneven distribution does not have a significant effect on the onset of phase co-continuity of the polymer components, it brings about a drastic refinement of the microstructure for the blends both with droplets/matrix and co-continuous morphologies. In addition to the expected reinforcing action of the filler, the resulting fine microstructure plays an important role in enhancing the mechanical properties of the blends. This is essentially because of a good quality of stress transfer across the interface between the constituents, which also seems to benefit for a good interfacial adhesion promoted by the filler. Our results provide the experimental evidence for the capabilities of nanoparticles added to multiphase polymer systems to act selectively as a reinforcing agent for specific domains of the material and as a medium able to assist the refinement of the polymer phases during mixing.
Resumo:
This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U) using nanofiltration membranes. The membranes were immersed in the waste for 24–5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.
Resumo:
This study investigated the separation of uranium and other elements in high concentrations from acid mine waters at Caldas Uranium Mining, in the southeast of Brazil, using nanofiltration membranes. Nanofiltrarion is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to removed dissolved species like uranium from acid mine water drainage was measured. Two composite aromatic polyamide commercially membranes of FilmTec/Dow were tested and it found that uranium rejections of greater than 90% and also showed potential for the separation of aluminum and manganese.
Resumo:
In 2009 Avella created a series of innovative fabrics for the Yves St Laurent (YSL) collection, deploying techniques from vehicle engineering to generate new materials for a range of garments. Studying the bonding of layers of material in ceramic plate thermobonding technology, Avella conducted a series of experiments with textiles such as flannel, silk and synthetics, and material such as leather, layered with polyamide foam and textile substrate to create new, textured and insulating fabrics with beautiful surfaces and interesting forms. The lightweight properties of the foam enabled the maximum insulation/weight ratio, and the panel moulding technology brought new forms of draping prêt-a-porter fashion design. Exclusive to YSL, this technique was patented and then shown at the Premiere Vision textiles trade fair in 2010. Much documented in specialist journals this innovation also breached the trade-culture barrier and was reported and documented in mainstream newspapers (New York Herald Tribune). Avella’s background in textile workshop studio experimentation at the RCA brought to YSL textiles research for manufacture, the innovative collaboration between fashion couture and engineering laboratory experiments from vehicle design.
Resumo:
Atualmente, a utilização e as diversas aplicações de materiais poliméricos seguem tendências crescentes, pelo que se torna necessário aprofundar a compreensão do seu comportamento e funcionalidades. Neste contexto, na presente dissertação analisa-se a fabricação e características de rolamentos poliméricos para a suspensão automóvel. Estes rolamentos visam a substituição dos clássicos rolamentos metálicos. Esta substituição tem por objetivos garantir a melhoria do funcionamento dos rolamentos, bem como o seu usufruto, contribuindo para um maior conforto e segurança dos passageiros e para uma redução do peso do veículo, com consequente diminuição do consumo do combustível e melhoria da eficiência. Sendo o poliacetal (POM) e a poliamida (PA) considerados polímeros de alto desempenho, estes polímeros reúnem boas características para aplicação na fabricação de dispositivos com funcionalidades exigentes como é o caso dos rolamentos. O presente trabalho aborda o estudo de algumas das suas propriedades, de modo a obter informações relevantes quanto à respetiva aplicação em rolamentos de suspensão, tendo como foco principal a análise da matéria-prima utilizada. Deste modo, alteraram-se as formulações variando-se os teores de material virgem e reciclado, estudou-se o ser comportamento mecânico, reológico e térmico: fizeram-se análises reológicas através do estudo do MFI a fim de se obterem informações complementares ao estudo mecânico, realizaram-se análises térmicas para avaliar a possibilidade de degradação térmica do material e, no caso da PA66-30GF, recorreu-se à microscopia eletrónica de varrimento para se estudar os aspetos microestruturais deste compósito reforçado com fibra de vidro. Adicionalmente, procedeu-se à análise da rugosidade superficial dos componentes dos rolamentos e quantificou-se o torque dos mesmos. A partir dos estudos anteriores, foi possível concluir que o POM apresenta um comportamento mecânico estável mesmo utilizando uma formulação com 100% de material reciclado. Este comportamento não se verificou na PA6630GF, dado que as suas propriedades mecânicas são afetadas de forma significativa pelo teor de reciclado na formulação. Com o estudo do torque determinou-se o valor limite do momento de torsão do rolamento que garante o seu bom funcionamento e eficácia.
Resumo:
The main objectives of this dissertation were: (i) to develop experimental and analytical procedures to quantify different physico-chemical properties of the ultra-thin (~ 100 nm) active layers of reverse osmosis (RO) and nanofiltration (NF) membranes and their interactions with contaminants; (ii) to use such procedures to evaluate the similarities and differences between the active layers of different RO/NF membranes; and (iii) to relate characterization results to membrane performance. Such objectives were motivated by the current limited understanding of the physico-chemical properties of active layers as a result of traditional characterization techniques having limitations associated with the nanometer-scale spatial resolution required to study these ultra-thin films. Functional groups were chosen as the main active layer property of interest. Specific accomplishments of this study include the development of procedures to quantify in active layers as a function of pH: (1) the concentration of both negatively and positively ionized functional groups; (2) the stoichiometry of association between ions (i.e., barium) and ionized functional groups (i.e., carboxylate and sulfonate); and (3) the steric effects experienced by ions (i.e., barium). Conceptual and mathematical models were developed to describe experimental results. The depth heterogeneity of the active layer physico-chemical properties and interactions with contaminants studied in this dissertation was also characterized. Additionally, measured concentrations of ionized functional groups in the polyamide active layers of several commercial RO/NF membranes were used as input in a simplified RO/NF transport model to predict the rejection of a strong electrolyte (i.e., potassium iodide) and a weak acid (i.e., arsenious acid) at different pH values based on rejection results at one pH condition. The good agreement between predicted and experimental results showed that the characterization procedures developed in this study serve as useful tools in the advancement of the understanding of the properties and structure of the active layers of RO/NF membranes, and the mechanisms of contaminant transport through them.
Resumo:
Most commercially available reverse osmosis (RO) and nanofiltration (NF) membranes are based on the thin film composite (TFC) aromatic polyamide membranes. However, they have several disadvantages including low resistance to fouling, low chemical and thermal stabilities and limited chlorine tolerance. To address these problems, advanced RO/NF membranes are being developed from polyimides for water and wastewater treatments. The following three projects have resulted from my research. (1) Positively charged and solvent resistant NF membranes. The use of solvent resistant membranes to facilitate small molecule separations has been a long standing industry goal of the chemical and pharmaceutical industries. We developed a solvent resistant membrane by chemically cross-linking of polyimide membrane using polyethylenimine. This membrane showed excellent stability in almost all organic solvents. In addition, this membrane was positively charged due to the amine groups remaining on the surface. As a result, high efficiency (> 95%) and selectivity for multivalent heavy metal removal was achieved. (2) Fouling resistant NF membranes. Antifouling membranes are highly desired for “all” applications because fouling will lead to higher energy demand, increase of cleaning and corresponding down time and reduced life-time of the membrane elements. For fouling prevention, we designed a new membrane system using a coating technique to modify membrane surface properties to avoid adsorption of foulants like humic acid. A layer of water-soluble polymer such as polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyvinyl sulfate (PVS) or sulfonated poly(ether ether ketone) (SPEEK), was adsorbed onto the surface of a positively charged membrane. The resultant membranes have a smooth and almost neutrally charged surface which showed better fouling resistance than both the positively charged NF membranes and commercially available negatively charged NTR-7450 membrane. In addition, these membranes showed high efficiency for removal of multivalent ions (> 95% for both cations and anions). Therefore, these antifouling surfaces can be potentially used for water softening, water desalination and wastewater treatment in a membrane bioreactor (MBR) process. (3) Thermally stable RO membranes. Commercial RO membranes cannot be used at temperature higher than 45°C due to the use of polysulfone substrate, which often limits their applications in industries. We successfully developed polyimides as the membrane substrate for thermally stable RO membranes due to their high thermal resistance. The polyimide-based composite polyamide membranes showed desalination performance comparable to the commercial TFC membrane. However, the key advantage of the polyimide-based membrane is its high thermal stability. As the feed temperature increased from 25oC to 95oC, the water flux increased 5 - 6 times while the salt rejection almost kept constant. This membrane appears to provide a unique solution for hot water desalination and also a feasible way to improve the water productivity by increasing the operating temperature without any drop in salt rejection.
Resumo:
Export of Fijian papaya (Carica papaya) fruit to destinations such as New Zealand has increased significantly over the last several years. Shipment by sea rather than air is the preferred method, given the capacity for larger volumes and reductions in cost. Long shipping times, however, can compromise fruit quality, although the use of modified atmosphere packaging (MAP) may provide a viable solution for extending fruit storage life. In a collaborative ACIAR project, Australian and Fijian researchers investigated the potential of using MAP to extend storage life of a Fijian papaya ('Fiji Red') fruit based on simulated sea transport conditions. Fruit were packed in one of three MAP environments within cartons, consisting of either a (1) Low Density Polyethylene (LDPE) bag with 10 g of KMnO4, (2) Polyamide Film (PF) bag with macro-perforations or (3) without a bag (control fruit). Fruit were held for 1, 2 or 3 weeks at 10°C before being unpacked, ripened and assessed for quality. On day 6 after outturn, fruit with the highest overall quality were those held in LDPE bags. LDPE fruit generally coloured up faster at outturn than PF or control fruit, had less overall moisture loss and scored high in flavour. Headspace carbon dioxide and oxygen concentrations within the LDPE bags were also near recommended levels for maintaining optimum storage-life quality. The LDPE bag provided the most suitable conditions for long term storage of fresh papaya fruit and is therefore the recommended MAP type for use with sea freight export out of Fiji.
Resumo:
Influence of the nature of the twine on the codend selectivity: Reminder: During the “SELECT 12” campaign in April 1996, we demonstrated that the nature of the material used for the manufacture of the trawl codend has an influence on the selectivity. Results showed that the use of single twine made of polyamide in the codend was more selective on hake and Nephrops than single twine made of polyethylene. Nevertheless single twine made of polyamide codend loses “flexibility” with use and therefore a study should be done to investigate its impact on selectivity (fishermen do not often use this equipment: however this 150 mesh net is particularly selective and it would be premature to discard it). Influence of the diameter of the twine and the mesh number on the selectivity of codends: These results show the high variability of codend charactistics tested on hake. The parameters tested during this campaign - e.g., diameter of the twine and mesh number (length of codend) - influence the selectivity of codends. It seems that the capture volume and the length of the codend are essential for the selectivity, while the nature of the equipment is secondary. However each parameter should be investigated in a future campaign. Furthermore, any regulatory measure that would seek to suppress the use of double twine polyethylene codend would be premature. Perspective: further experiment should be considered with the standard polyamide codend of 32.5 mm. • An additional experiment with the 100 mesh and 65 mm polyethylene double twine test codend to determine the influence of the mesh number on the selectivity; • An additional experiment with the 100 mesh deep and 65 mm polyethylene double twine (4 mm diameter) test codend to determine the influence of the diameter of the twine on the selectivity.