996 resultados para plant cover
Resumo:
Wheel traffic can lead to compaction and degradation of soil physical properties. This study, as part of a study of controlled traffic farming, assessed the impact of compaction from wheel traffic on soil that had not been trafficked for 5 years. A tractor of 40 kN rear axle weight was used to apply traffic at varying wheelslip on a clay soil with varying residue cover to simulate effects of traffic typical of grain production operations in the northern Australian grain belt. A rainfall simulator was used to determine infiltration characteristics. Wheel traffic significantly reduced time to ponding, steady infiltration rate, and total infiltration compared with non-wheeled soil, with or without residue cover. Non-wheeled soil had 4-5 times greater steady infiltration rate than wheeled soil, irrespective of residue cover. Wheelslip greater than 10% further reduced steady infiltration rate and total infiltration compared with that measured for self-propulsion wheeling (3% wheelslip) under residue-protected conditions. Where there was no compaction from wheel traffic, residue cover had a greater effect on infiltration capacity, with steady infiltration rate increasing proportionally with residue cover (R-2 = 0.98). Residue cover, however, had much less effect on infiltration when wheeling was imposed. These results demonstrated that the infiltration rate for the non-wheeled soil under a controlled traffic zero-till system was similar to that of virgin soil. However, when the soil was wheeled by a medium tractor wheel, infiltration rate was reduced to that of long-term cropped soil. These results suggest that wheel traffic, rather than tillage and cropping, might be the major factor governing infiltration. The exclusion of wheel traffic under a controlled traffic farming system, combined with conservation tillage, provides a way to enhance the sustainability of cropping this soil for improved infiltration, increased plant-available water, and reduced runoff-driven soil erosion.
Resumo:
White cypress-pine stands typically support sparse densities of shrubs and grasses. The commonly held opinion is that leaching of allelopathic chemical compounds from cypress-pine litter partly facilitates this exclusion. Germination and growth of cypress pine seedlings do not appear to be similarly affected. This study set out to determine whether cypress litter had a differential effect on germination and growth of cypress-pine seedlings and on associated ground-cover species. Glasshouse trials comparing seedling emergence under cypress- and artificial-litter layers were undertaken. Cypress-pine litter did not have an inhibitory effect on the germination or growth of ground-cover species. In most cases, seedling emergence was facilitated by the application of cypress-pine litter due to its ability to increase the water holding capacity of the underlying soil. Cypress litter did not promote growth of its own seedlings over its competitors except on coarse-textured soils where it provided an ameliorative function to water stress due to the soil's reduced water holding capacity. The inhibition of ground-cover species' germination and growth in pure cypress stands was suggested to be the result of high below-ground resource competition due to the pine's expansive root morphology.
Resumo:
The use of cover crops is important for the agricultural crop and soil management in order to improve the system and, consequently, to increase yield. Therefore, the present study analyzed the effect of crop residues of black oat (Avena strigosa Schreb.) (BO) and a cocktail (CO) of BO, forage turnip (Raphanus sativus L.) (FT) and common vetch (Vicia sativa L.) (V) on the emergence speed index (ESI), seedling emergence speed (SES) plant height and soybean yield in different intervals between cover crop desiccation with glyphosate 480 (3 L ha-1) and BRS 232 cultivar sowing. Plots of 5 x 2.5 m with 1 m of border received four treatments with BO cover crops and four with CO as well as a control for each cover crop, at random, with five replications. The plots were desiccated in intervals of 1, 10, 20 and 30 days before soybean seeding. The harvest was manual while yield was adjusted to 13% of moisture content. The experimental design was completely randomized with splitplots and means compared by the Scott and Knott test at 5% of significance. The results showed that CO of cover crops can be recommended for soybean to obtain a more vigorous seedling emergence, from 10 days after cover crop desiccation.
Resumo:
Studies to select one or more species of coverage plants adapted to Amazonian soil and climate conditions of the Amazon are a promising strategy for the improvement of environmental quality, establishing no-till agricultural systems, and thereby reducing the impacts of monoculture farming. The aim of this study was to assess the persistence time, half-life time, macronutrient content and accumulation, and C:N ratio of straw coverage in a Ultisol in northeastern Pará. Experimental design was randomized blocks with five treatments and five replicates. Plants were harvested after 105 days, growth and biomass production was quantified. After 84 days, soil coverage was 97, 85, 52, 50, and 15% for signalgrass (Brachiaria brizantha) (syn. Urochloa), dense crowngrass (Panicum purpurascens), jack bean (Canavalia ensiformes), pearl millet (Pennisetum americanum) and sunn hemp (Crotalaria juncea,), respectively. Signalgrass yielded the greatest dry matter production (9,696 kg ha-1). It also had high C:N ratio (38.4), long half-life (86.5 days) and a high persistence in the field. Jack bean also showed high dry matter production (8,950 kg ha-1), but it had low C:N ratio (17.4) and lower half-life time (39 days) than the grasses. These attributes indicate that signalgrass and jack bean have a high potential for use as cover plants in no-till agricultural systems in the State of Pará.
Resumo:
Nutrient recycling in the forest is linked to the production and decomposition of litter, which are essential processes for forest maintenance, especially in regions of nutritionally poor soils. Human interventions in forest such as selecttive logging may have strong impacts on these processes. The objectives of this study were to estimate litterfall production and evaluate the influence of environmental factors (basal area of vegetation, plant density, canopy cover, and soil physicochemical properties) and anthropogenic factors (post-management age and exploited basal area) on this production, in areas of intact and exploited forest in southern Amazonia, located in the northern parts of Mato Grosso state. This study was conducted at five locations and the average annual production of litterfall was 10.6 Mg ha-1 year-1, higher than the values for the Amazon rainforest. There were differences in litterfall productions between study locations. Effects of historical logging intensity on litterfall production were not significant. Effects of basal area of vegetation and tree density on litterfall production were observed, highlighting the importance of local vegetation characteristics in litterfall production. This study demonstrated areas of transition between the Amazonia-Cerrado tend to have a higher litterfall production than Cerrado and Amazonia regions, and this information is important for a better understanding of the dynamics of nutrient and carbon cycling in these transition regions.
Resumo:
Studies of species range determinants have traditionally focused on abiotic variables (typically climatic conditions), and therefore the recent explicit consideration of biotic interactions represents an important advance in the field. While these studies clearly support the role of biotic interactions in shaping species distributions, most examine only the influence of a single species and/or a single interaction, failing to account for species being subject to multiple concurrent interactions. By fitting species distribution models (SDMs), we examine the influence of multiple vertical (i.e., grazing, trampling, and manuring by mammalian herbivores) and horizontal (i.e., competition and facilitation; estimated from the cover of dominant plant species) interspecific interactions on the occurrence and cover of 41 alpine tundra plant species. Adding plant-plant interactions to baseline SDMs (using five field-quantified abiotic variables) significantly improved models' predictive power for independent data, while herbivore-related variables had only a weak influence. Overall, abiotic variables had the strongest individual contributions to the distribution of alpine tundra plants, with the importance of horizontal interaction variables exceeding that of vertical interaction variables. These results were consistent across three modeling techniques, for both species occurrence and cover, demonstrating the pattern to be robust. Thus, the explicit consideration of multiple biotic interactions reveals that plant-plant interactions exert control over the fine-scale distribution of vascular species that is comparable to abiotic drivers and considerably stronger than herbivores in this low-energy system.
Resumo:
Biological traits that are advantageous under specific ecological conditions should be present in a large proportion of the species within an ecosystem, where those specific conditions prevail. As climatic conditions change, the frequency of certain traits in plant communities is expected to change with increasing altitude. We examined patterns of change for 13 traits in 120 exhaustive inventories of plants along five altitudinal transects (520-3100 m a.s.l.) in grasslands and in forests in western Switzerland. The traits selected for study represented the occupation of space, photosynthesis, reproduction and dispersal. For each plot, the mean trait values or the proportions of the trait states were weighted by species cover and examined in relation to the first axis of a PCA based on local climatic conditions. With increasing altitude in grasslands, we observed a decrease in anemophily and an increase in entomophily complemented by possible selfing; a decrease in diaspores with appendages adapted to ectozoochory, linked to a decrease in achenes and an increase in capsules. In lowlands, pollination and dispersal are ensured by wind and animals. However, with increasing altitude, insects are mostly responsible for pollination, and wind becomes the main natural dispersal vector. Some traits showed a particularly marked change in the alpine belt (e.g., the increase of capsules and the decrease of achenes), confirming that this belt concentrates particularly stressful conditions to plant growth and reproduction (e.g. cold, short growing season) that constrain plants to a limited number of strategies. One adaptation to this stress is to limit investment in dispersal by producing capsules with numerous, tiny seeds that have appendages limited to narrow wings. Forests displayed many of the trends observed in grasslands but with a reduced variability that is likely due to a shorter altitudinal gradient.
Resumo:
In the mid-to long-term, resource constraints will force society to cover a significant share of the future demand for fuels, materials and chemicals by renewable resources. This trend is already visible in the increasing conversion of carbohydrates and plant oils to fuels, chemicals, and polymers. In this perspective, we discuss current efforts and ideas to produce platform chemicals and polymers directly in transgenic plants.
Resumo:
Crop species with the C4 photosynthetic pathway are more efficient in assimilating N than C3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C4 photosynthetic pathway, and black oat (Avena Strigosa) and triticale (X Triticosecale), with the C3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha-1 of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.
Resumo:
Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb) or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg) and corn spurry (Spergula arvensis L.). The control treatment consisted of resident vegetation (fallow in the winter season). In the summer, a mixture of pearl millet (Pennisetum americanum L.) with sunnhemp (Crotalaria juncea L.) or with soybean (Glycine max L.) was sown in all plots. Soil cores (0-10 cm) and root samples were collected in six growing seasons (winter and summer of each year). Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.
Resumo:
The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB) during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1) Black oat straw (Avena strigosa Schreb.); 2) Rye straw (Secale cereale L.); 3) Common vetch straw (Vicia sativa L.). The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB) were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.
Resumo:
The potential ecological impact of ongoing climate change has been much discussed. High mountain ecosystems were identified early on as potentially very sensitive areas. Scenarios of upward species movement and vegetation shift are commonly discussed in the literature. Mountains being characteristically conic in shape, impact scenarios usually assume that a smaller surface area will be available as species move up. However, as the frequency distribution of additional physiographic factors (e.g., slope angle) changes with increasing elevation (e.g., with few gentle slopes available at higher elevation), species migrating upslope may encounter increasingly unsuitable conditions. As a result, many species could suffer severe reduction of their habitat surface, which could in turn affect patterns of biodiversity. In this paper, results from static plant distribution modeling are used to derive climate change impact scenarios in a high mountain environment. Models are adjusted with presence/absence of species. Environmental predictors used are: annual mean air temperature, slope, indices of topographic position, geology, rock cover, modeled permafrost and several indices of solar radiation and snow cover duration. Potential Habitat Distribution maps were drawn for 62 higher plant species, from which three separate climate change impact scenarios were derived. These scenarios show a great range of response, depending on the species and the degree of warming. Alpine species would be at greatest risk of local extinction, whereas species with a large elevation range would run the lowest risk. Limitations of the models and scenarios are further discussed.
Resumo:
The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil), in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean) and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5). In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation) as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient). After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped) was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.
Resumo:
Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT) and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m) twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC), microbial biomass carbon (MBC), oxidizable fractions, and the carbon fractions fulvic acid (C FA), humic acid (C HA) and humin (C HUM) were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m) where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover plant.
Resumo:
Aims: To assess the potential distribution of an obligate seeder and active pyrophyte, Cistus salviifolius, a vulnerable species in the Swiss Red List; to derive scenarios by changing the fire return interval; and to discuss the results from a conservation perspective. A more general aim is to assess the impact of fire as a natural factor influencing the vegetation of the southern slopes of the Alps. Locations: Alps, southern Switzerland. Methods: Presence-absence data to fit the model were obtained from the most recent field mapping of C. salviifolius. The quantitative environmental predictors used in this study include topographic, climatic and disturbance (fire) predictors. Models were fitted by logistic regression and evaluated by jackknife and bootstrap approaches. Changes in fire regime were simulated by increasing the time-return interval of fire (simulating longer periods without fire). Two scenarios were considered: no fire in the past 15 years; or in the past 35 years. Results: Rock cover, slope, topographic position, potential evapotranspiration and time elapsed since the last fire were selected in the final model. The Nagelkerke R-2 of the model for C. salviifolius was 0.57 and the Jackknife area under the curve evaluation was 0.89. The bootstrap evaluation revealed model robustness. By increasing the return interval of fire by either up to 15 years, or 35 years, the modelled C. salviifolius population declined by 30-40%, respectively. Main conclusions: Although fire plays a significant role, topography and rock cover appear to be the most important predictors, suggesting that the distribution of C. salviifolius in the southern Swiss Alps is closely related to the availability of supposedly competition-free sites, such as emerging bedrock, ridge locations or steep slopes. Fire is more likely to play a secondary role in allowing C. salviifolius to extend its occurrence temporarily, by increasing germination rates and reducing the competition from surrounding vegetation. To maintain a viable dormant seed bank for C. salviifolius, conservation managers should consider carrying out vegetation clearing and managing wild fire propagation to reduce competition and ensure sufficient recruitment for this species.