721 resultados para planning withsuncertainty
Resumo:
Radiotherapy (RT) is one of the most important approaches in the treatment of cancer and its performance can be improved in three different ways: through the optimization of the dose distribution, by the use of different irradiation techniques or through the study of radiobiological initiatives. The first is purely physical because is related to the physical dose distributiuon. The others are purely radiobiological because they increase the differential effect between the tumour and the health tissues. The Treatment Planning Systems (TPS) are used in RT to create dose distributions with the purpose to maximize the tumoral control and minimize the complications in the healthy tissues. The inverse planning uses dose optimization techniques that satisfy the criteria specified by the user, regarding the target and the organs at risk (OAR’s). The dose optimization is possible through the analysis of dose-volume histograms (DVH) and with the use of computed tomography, magnetic resonance and other digital image techniques.
Resumo:
Radiotherapy is one of the therapeutics selected for localized prostate cancer, in cases where the tumour is confined to the prostate, penetrates the prostatic capsule or has reached the seminal vesicles (T1 to T3 stages). The radiation therapy can be administered through various modalities, being historically used the 3D conformal radiotherapy (3DCRT). Other modality of radiation administration is the intensity modulated radiotherapy (IMRT), that allows an increase of the total dose through modulation of the treatment beams, enabling a reduction in toxicity. One way to administer IMRT is through helical tomotherapy (TH). With this study we intent to analyze the advantages of helical tomotherapy when compared with 3DCRT, by evaluating the doses in the organs at risk (OAR) and planning target volumes (PTV).
Resumo:
This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper presents a new technique to solve the inverse kinematics problem of redundant manipulators, which uses a fractional differential of order α to control the joint positions. Two performance measures are defined to examine the strength and weakness of the proposed method. The positional error index measures the precision of the manipulator's end-effector at the target position. The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute repetitive trajectories in the operational workspace. Redundant and hyper-redundant planar manipulators reveal that it is possible to choose in a large range of possible values of α in order to get repetitive trajectories in the joint space.
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. The results are compared with a genetic algorithm that adopts the direct kinematics. In both cases the trajectory planning is formulated as an optimization problem with constraints.
Resumo:
Generating manipulator trajectories considering multiple objectives and obstacle avoidance is a non-trivial optimization problem. In this paper a multi-objective genetic algorithm based technique is proposed to address this problem. Multiple criteria are optimized considering up to five simultaneous objectives. Simulation results are presented for robots with two and three degrees of freedom, considering two and five objectives optimization. A subsequent analysis of the spread and solutions distribution along the converged non-dominated Pareto front is carried out, in terms of the achieved diversity.
Resumo:
Arquivos de Medicina 1998; 12(4): 246-248
Resumo:
As organizações são entidades de natureza sistémica, composta, na sua maioria por várias pessoas que interagindo entre si, se propõem atingir objetivos comuns. Têm, frequentemente, de responder a alterações da envolvente externa através de processos de mudança organizacional, sendo fundamentalmente adaptativas, pois, para sobreviver, precisam de se reajustar continuamente às condições mutáveis do meio. O sucesso das organizações depende da sua capacidade de interação com o meio envolvente, ou seja, da sua capacidade de inovar e operar local ou globalmente, criando novas oportunidades de negócio que importa aproveitar. As tecnologias e os sistemas de informação e a forma como são utilizadas são fatores determinantes nesses processos de evolução e mudança. É necessário que a estratégia de TI esteja alinhada com os objetivos de negócio e que a sua utilização contribua para aumentos de produtividade e de eficiência no seu desempenho. Este trabalho descreve a análise, conceção, seleção e implementação de um Sistema de Informação na Portgás, S.A. baseado de um ERP - Enterprise Resource Planning, capaz de suportar a mudança organizacional e melhorar o desempenho global da organização. Promovendo numa primeira fase um crescimento exponencial do negócio e, de seguida, a adaptação da organização ao mercado concorrencial. O caso descreve o trabalho realizado pelo candidato e por equipas internas e externas, de levantamentos de requisitos gerais, técnicos e funcionais, desenvolvimento de um caderno de encargos, seleção, implementação e exploração de um ERP SAP. A apresentação e discussão do caso são enquadradas numa revisão de literatura sobre o papel das TI nos processos de mudança organizativa, alinhamento estratégico e vantagem competitiva das TI, contributo das TI para o aumento da produtividade, processos adoção e difusão das TI, fatores críticos de sucesso e BPM –Business Process Management
Resumo:
This study aims to understand the reality of social service organizations, the level of implementation of the strategic planning as well as the impact of its application on organizational effectiveness. At first, we will group organizations in clusters according to the level of strategic planning implementation and its degree of effectiveness. Secondly, we will analyse all the different groups. Given the growing number of social service organizations and the consequent complexity of their structures, it turns out the need for these organizations adopt formal management techniques. Strategic planning is a valuable strategic management tool and one of its main objectives is to make organizations more effective. Therefore, the research has been conducted in order to determine if strategic planning is implemented in social service organizations and which effects has its application on organizational effectiveness. The survey, applied to 220 social service organizations, allowed us to gather them into different clusters, showing that different levels of strategic planning determine distinct degrees of organizational efficiency. Finally, it should be noted that findings of this research may be essential to decision makers of these organizations, because it was shown that the adoption of strategic planning has a positive influence on organizational effectiveness of social service organizations.
Resumo:
Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering