976 resultados para photosynthesis
Resumo:
Anthropogenic climate change is exerting pressures on coastal ecosystems through increases in temperature, precipitation and ocean acidification. Phytoplankton community structure and photo-physiology are therefore adapting to these conditions. Changes in phytoplankton biomass and photosynthesis in relation to temperature and nutrient concentrations were assessed using a 14 year dataset from a coastal station in the Western English Channel (WEC). Dinoflagellate and coccolithophorid biomass exhibited a positive correlation with temperature, reaching the highest biomass at between 15 and 17°C. Diatoms showed a negative correlation with temperature, with highest biomass at 10°C. Chlorophyll a (chl a) normalised light-saturated photosynthetic rates (PBm) exhibited a hyperbolic response to increasing temperature, with an initial linear increase from 8 to 11°C, and reaching a plateau from 12°C. There was however no significant positive correlation between nutrients and phytoplankton biomass or PBm, which reflects the lag time between nutrient input and phytoplankton growth at this coastal site. The major phytoplankton groups that occurred at this site occupied distinct thermal niches, which in turn modified PBm. Increasing temperature, and higher water column stratification, was major factors in the initiation of dinoflagellates blooms at this site. Dinoflagellates blooms during summer also co-varied with silicate concentration, and acted as a tracer of dissolved inorganic nitrogen and phosphate from river run-off, which were subsequently reduced during these blooms. The data implies that increasing temperature and high river runoff during summer, will promote dinoflaglellates blooms in the WEC.
Resumo:
Despite its importance to ocean–climate interactions, the metabolic state of the oligotrophic ocean has remained controversial for 415 years. Positions in the debate are that it is either hetero- or autotrophic, which suggests either substantial unaccounted for organic matter inputs, or that all available photosynthesis (P) estimations (including 14C) are biased. Here we show the existence of systematic differences in the metabolic state of the North (heterotrophic) and South (autotrophic) Atlantic oligotrophic gyres, resulting from differences in both P and respiration (R). The oligotrophic ocean is neither auto- nor heterotrophic, but functionally diverse. Our results show that the scaling of plankton metabolism by generalized P:R relationships that has sustained the debate is biased, and indicate that the variability of R, and not only of P, needs to be considered in regional estimations of the ocean’s metabolic state.
Resumo:
We examine a model of the rate of phytoplankton production in the ocean and its dependence on depth. The model is analysed as a function of photosynthesis parameters and it is shown that: (i) production profiles with depth are determined uniquely by the parameter values; (ii) daily water column production is not uniquely determined by the parameter values; (iii) a unique combination of parameters exists for which the model best fits a measured production profile. An inverse procedure is developed to recover photosynthesis parameters from measured profiles of primary production, and its performance tested by application to profiles of primary production collected at the Hawaii Ocean Time Series. For each profile tested, the method is successful in recovery of the photosynthesis parameters. The method can be applied to the estimation of photosynthesis parameters from data on in situ production profiles, which have been collected globally for more than half a century, thereby augmenting the world archive of these parameters for application in ecosystem modelling and estimation of primary production from remotely sensed data.
Resumo:
Field-collected specimens of three species of Laminaria and three species of subtidal red algae (Delesseria sanguinea, Plocamium cartilagineum and Phyllophora pseudoceranoides) were exposed to natural summer sunlight on Helgoland (southern North Sea) for up to 4 h at 15 °C. Dark-adapted variable fluorescence (Fv : Fm) was measured immediately after these treatments, and following 6, 24 and 48 h of recovery in moderate irradiances of white light. The response of plants to the full spectrum of natural sunlight was compared with that to PAR alone, UV-A + visible, UV-A + UV-B, or UV-A alone. The Fv : Fm values of all species were reduced to minimal values after 4 h in all of these treatments, but those of the more resistant species (Laminaria spp. and P. pseudoceranoides) were higher after shorter exposures to UV radiation alone than to PAR with or without UV. The recovery of Fv : Fm in all species was also more rapid in the two treatments that contained UV radiation alone than in those that included PAR. These results suggest that it is the high irradiances of PAR in natural sunlight which are responsible for the photoinhibition of photosynthesis of subtidal seaweeds and that the current ambient irradiances of UV radiation (either UV-B or UV-A) in northern temperate latitudes would not contribute significantly to this photoinhibition.
Resumo:
Climate change scenarios comprise significant modifications of the marine realm, notably ocean acidification and temperature increase, both direct consequences of the rising atmospheric CO2 concentration. These changes are likely to impact marine organisms and ecosystems, namely the valuable seagrass-dominated coastal habitats. The main objective of this thesis was to evaluate the photosynthetic and antioxidant responses of seagrasses to climate change, considering CO2, temperature and light as key drivers of these processes. The methodologies used to determine global antioxidant capacity and antioxidant enzymatic activity in seagrasses were optimized for the species Cymodocea nodosa and Posidonia oceanica, revealing identical defence mechanisms to those found in terrestrial plants. The detailed analysis and identification of photosynthetic pigments in Halophila ovalis, H.stipulacea, Zostera noltii, Z marina, Z. capricorni, Cymodocea nodosa and Posidonia oceanica, sampled across different climatic zones and depths, also revealed a similarity with terrestrial plants, both in carotenoid composition and in the pigment-based photoprotection mechanisms. Cymodocea nodosa plants from Ria Formosa were submitted to the combined effect of potentially stressful light and temperature ranges and showed considerable physiological tolerance, due to the combination of changes in the antioxidant system, activation of the VAZ cycle and accumulation of leaf soluble sugars, thus preventing the onset of oxidative stress. Cymodocea nodosa plants living in a naturally acidified environment near submarine volcanic vents in Vulcano Island (Italy) showed to be under oxidative stress despite the enhancement of the antioxidant capacity, phenolics concentration and carotenoids. Posidonia oceanica leaves loaded with epiphytes showed a significant increase in oxidative stress, despite the increase of antioxidant responses and the allocation of energetic resources to these protection mechanisms. Globally, the results show that seagrasses are physiologically able to deal with potentially stressful conditions from different origins, being plastic enough to avoid stress in many situations and to actively promote ulterior defence and repair mechanisms when under effective oxidative stress.
Resumo:
Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.