949 resultados para phase morphology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hollow structures with unique morphologies form due to particle agglomeration in acoustically levitated nanofluid functional droplets when subjected to external heating. The final diameter of the structure depends only on the ratio of agglomeration to evaporation time scales for various nanoparticle laden droplets, and not on the type of the suspended particles. These time scales depend only on nanoparticle concentration. This valuable information may be exploited to form microstructures with desired properties from ceramic compounds. Phase diagrams for alumina and silica droplets indicate the transition from a bowl to ring structure depending on concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we have prepared two donor-acceptor-donor (D-A-D) pi-conjugated oligomers to investigate the effect of phase separation on the performance of bulk heterojunction (BHJ) solar cells. These charge transfer low band gap pi-conjugated oligomers (TTB and NMeTTB) were synthesized by Knoevenagel condensation of terthiophenecarbaldehyde and barbiturate appended pyran derivative. The thin film morphology of both the oligomers and along with electron acceptor 6,6]-phenyl-C60-butyric acid methyl ester (PC61BM) was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The blend of NMeTTB and PC61BM thin film yield highly ordered thin film, whereas there was clear phase separation between TTB and PC61BM in thin film. The BHJ solar cell was fabricated using a blend of NMeTTB and TTB with PC61BM acceptor in 1:1 ratio as active layer, and a power conversion efficiency of 1.8% was obtained. This device characteristic was compared with device having TTB:PC61BM as active layer, and large difference is observed in photocurrents. This poor performance of TTB in BHJ devices was attributed to the difference in the nanoscale morphology of the corresponding derivatives. We rationalize our findings based on the low charge carrier mobility in organic field-effect transistors and miscibility/phase separation parameter of binary components (oligomers and PC61BM) in the active layer of bulk heterojunction solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructural changes resulting from isothermal decomposition of the beta-phase have been studied in Cu-rich binary Cu-Al and ternary Cu-Al-Sn alloys containing up to 3 at.% Sn at temperatures from 873 to 673 K. Results are presented as TTT diagrams. The decomposition occurs in several stages, each of which involves the establishment of metastable equilibrium between beta and one or more of the product phases alpha, beta(1) and gamma(2). Addition of Sn has been shown to increase the stability of the ordered beta(1)-phase in relation to beta. In alloys containing more than 2 at.% Sn, the beta(1) emerges as a stable phase. At low Sn concentrations beta(1) is metastable. An important new finding is the existence of three-phase equilibrium microstructure containing alpha, beta(1) and gamma(2). Increasing addition of Sn alters the morphology of beta(1) from rosettes to dendrites and finally to Widmanstatten needles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two multicriterion decision-making methods, namely `compromise programming' and the `technique for order preference by similarity to an ideal solution' are employed to prioritise 22 micro-catchments (A1 to A22) of Kherthal catchment, Rajasthan, India and comparative analysis is performed using the compound parameter approach. Seven criteria - drainage density, bifurcation ratio, stream frequency, form factor, elongation ratio, circulatory ratio and texture ratio - are chosen for the evaluation. The entropy method is employed to estimate weights or relative importance of the criterion which ultimately affects the ranking pattern or prioritisation of micro-catchments. Spearman rank correlation coefficients are estimated to measure the extent to which the ranks obtained are correlated. Based on the average ranking approach supported by sensitivity analysis, micro-catchments A6, A10, A3 are preferred (owing to their low ranking) for further improvements with suitable conservation and management practices, and other micro-catchments can be processed accordingly at a later phase on a priority basis. It is concluded that the present approach can be explored for other similar situations with appropriate modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization-induced phase separation and segmental relaxations in poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blends was systematically investigated by melt-rheology and broadband dielectric spectroscopy in the presence of multiwall carbon nanotubes (MWNTs). Different functionalized MWNTs (amine, -NH2; acid, -COOH) were incorporated in the blends by melt-mixing above the melting temperature of PVDF, where the blends are miscible, and the crystallization induced phase separation was probed in situ by shear rheology. Interestingly, only -NH2 functionalized MWNTs (a-MWNTs) aided in the formation of beta-phase (trans-trans) crystals in PVDF, whereas both the neat blends and the blends with -COOH functionalized MWNTs (c-MWNTs) showed only alpha-phase (trans-gauche-trans-gauche') crystals as inferred from wide-angle X-ray diffraction (WXRD) and Fourier transform infrared (FTIR). Furthermore, blends with only a-MWNTs facilitated in heterogeneous nucleation in the blends manifesting in an increase in the calorimetric crystallization temperature and hence, augmented the theologically determined crystallintion induced phase separation temperature. The dielectric relaxations associated with the crystalline phase of PVDF (alpha(c)) was completely absent in the blends with a-MWNTs in contrast to neat blends and the blends with c-MWNTs in the dielectric loss spectra. The relaxations in the blends investigated here appeared to follow Havriliak-Negami (HN) empirical equations, and, more interestingly, the dynamic heterogeneity in the system could be mapped by an extra relaxation at higher frequency at the crystallization-induced phase separation temperature. The mean relaxation time (tau(HN)) was evaluated and observed to be delayed in the presence of MWNTs in the blends, more prominently in the case of blends with a-MWNTs. The latter also showed a significant increase in the dielectric relaxation strength (Delta epsilon). Electron microscopy and selective etching was used to confirm the localization of MWNTs in the amorphous phases of the interspherulitic regions as observed from scanning electron microscopy (SEM). The evolved crystalline morphology, during crystallization-induced phase separation, was observed to have a strong influence on the charge transport processes in the blends. These observations were further supported by the specific interactions (like dipole induced dipole interaction) between a-MWNTs and PVDF, as inferred from FTIR, and the differences in the crystalline morphology as observed from WXRD and polarized optical microscopy (POM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have shown earlier [1] that these PGNPs resemble star polymers or spherical brushes in terms of their morphology in the melt. However, these particles show dynamics in melt which is quite different from other soft colloidal particles. Since most of the work on soft colloidal particles have been performed in solutions we have now explored the phase behavior of the PGNPs in good solvent using microscopic structural and dynamical measurements on binary mixtures of homopolymers and soft colloids consisting of polymer grafted nanoparticles. We observe anomalous structural and dynamical phase transitions of these binary mixtures, including appearance of spontaneous orientational alignment and logarithmic structural relaxations, as a function of added homopolymers of different molecular weights. Our experiments points to the possibility of exploiting the phase space in density and homopolymer size, of such hybrid systems, to create new materials with unique properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We incorporated tin oxide nanostructures into the graphene nanosheet matrix and observed that the phase of tin oxide varies with the morphology. The highest discharge capacity and coulumbic efficiency were obtained for SnO phase of nanoplates morphology. Platelet morphology of tin oxide shows more reversible capacity than the nanoparticle (SnO2 phase) tin oxide. The first discharge capacity obtained for SnO@GNS is 1393 and 950 mAh/g for SnO2@GNS electrode at a current density of 23 mu A/cm(2). A stable capacity of about 1022 and 715 mAh/g was achieved at a current rate of 23 mu A/cm(2) after 40 cycles for SnO@GNS and SnO2@GNS anodes, respectively. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solution combustion synthesis technique was adopted to synthesize V2O5, and Mo doped phases, The as-synthesized V2O5, has been reduced by a novel reduction technique to form VO2 typephase. The monophasic nature of the samples as revealed by XRD data and systematic shift in peak position indicated solid solubility up to 2 at % of Mo in VO2 lattice. The crystallite size was found to similar to 40 nm. Particle size measurement carried out using Transmission electron microscope ( TEM) agreed with XRD experiments. Scanning electron microscope revealed the morphology of the particles to be plate like and bimodal. Variation in the metal- insulator transition temperature as a function of doping was investigated by 4-probe electrical resistivity measurement on sintered ceramics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study involves synthesis of a series of Tb3+ doped ZrO2 nanophosphors by solution combustion method using oxalyl dihydrazide as fuel. The as-formed ZrO2:Tb3+ nanophosphors having different concentrations of Tb3+ (1-11 mol%) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible spectroscopic techniques and the materials were subjected to photoluminescence and photocatalytic dye decolorization studies. The PXRD analysis indicates the formation of tetragonal symmetry up to 5 mol% concentration of Tb3+. Further increase in Tb3+ concentration has lead to cubic phase formation and the same was confirmed by Rietveld refinement analysis. SEM images revealed that material was highly porous in nature comprising of large voids and cracks with irregular morphology. TEM and SAED images clearly confirm the formation of high quality tetragonal nanocrystals. The emissive properties of nanophosphors were found to be dependent on Tb3+ dopant concentration. The green emission of the material was turned to white emission with the increase of Tb3+ ion concentration. The photocatalytic activities of these nanophosphors were probed for the decolorization of Congo red under UV and Sunlight irradiation. All the photocatalysts showed enhanced activity under UV light compared to Sunlight. The photocatalyst with 7 mol% Tb3+ showed enhanced activity attributed to effective separation of charge carriers due to phase transformation from tetragonal to cubic. The influence of crystallite size and PL on charge carrier trapping-recombination dynamics was investigated. The study successfully demonstrates synthesis of tetragonal and cubic ZrO2:Tb3+ green nanophosphors with superior photoluminescence and photocatalytic activities. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase diagram studies of succinonitrile-vanillin system show the formation of 2:1 congruent melting type compound. Crystallization velocities of pure components, succinonitrile-vanillin complex, and two eutectics have been determined at different undercoolings. On the basis of heat of fusion measurements, excess thermodynamic functions have been calculated. Microstructural studies revealed that impurities modify the morphology. FTIR spectral studies and computer simulation have shown the existence of hydrogen bonding in the eutectics and the congruent melting compound. On the basis of experimental results, the mechanism of formation of eutectics and its solidification behavior are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a unique method was adopted to design porous membranes through crystallization induced phase separation in PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends. By etching out PMMA, which segregates either in the interlamellar and/or in the interspherulitic regions of the blends, nanoporous hierarchical structures can be derived. Different nanoparticles like titanium dioxide (TiO2), silver nanoparticle (Ag) decorated carbon nanotubes (Ag-CNTs), TiO2 decorated CNTs (TiO2-CNTs), Ag decorated TiO2 (Ag-TiO2) and Ag-TiO2 decorated CNTs (Ag@TiO2-CNTs) were synthesized and melt mixed with 80/20 PVDF/PMMA blends to render antibacterial activity to the membranes. Scanning electron microscopy (SEM) was used to study the crystalline morphology of the membranes. A significant improvement in the trans-membrane flux was obtained in the blends with Ag@TiO2 decorated CNTs as compared to the membranes derived from the neat blends, which can be attributed to the interconnected pores in these membranes. Both qualitative and quantitative studies of antifouling and antibacterial activity (using E. coli as a model bacterium) were performed using the standard plate count method. SEM micrographs clearly showed that the antifouling activity of the membranes was improved with addition of Ag@TiO2-CNTs. In the quantitative standard plate count method, the bacterial colony significantly decreased with the addition of Ag@TiO2-CNTs as against neat blends. This study opens a new avenue in the fabrication of polymer blend based membranes for water filtration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present work is to study the effect of electrical process Parameters (duty cycle and frequency) on morphological, structural, and in-vitro corrosion characteristics of oxide films formed on zirconium by plasma electrolytic oxidation in an electrolyte system consisting of 5 g/L of trisodium orthophosphate. The oxide films fabricated on zirconium by systematically varying the duty cycle and frequency are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, scratch resistance, corrosion resistance, apatite forming ability and osteoblast cell adhesion. X-ray diffraction pattern of all the oxide films showed the predominance of m-ZrO2 phase. Dense and uniform films with thickness varying from 9 to 15 mu m and roughness in the range of 0.62 to 1.03 mu m are formed. Porosity of oxide films is found to be increased with an increase infrequency. The water contact angle results demonstrated that the oxide films exhibited similar hydrophilicity to zirconium substrate. All oxide films showed improved corrosion resistance, as indicated by far lower corrosion current density and passive corrosion potential compared to the zirconium substrate in simulated body fluid environment, and among the four different combinations of duty cycle and frequency employed in the present study, the oxide film formed at 95% duty cycle and 50 Hz frequency (HDLF film) showed superior pitting corrosion resistance, which can be attributed to its pore free morpholOgy. Scratch test results showed that the HDLF oxide film adhered firmly to the substrate by developing a notable scratch resistance at 19.5 +/- 1.2.N. Besides the best corrosion resistance and scratch retistance, the HDLF film also showed good apatite forming ability and osteo sarcoma cell adhesion on its surface. The HDLF oxide film on zirconium with superior surface characteristics is believed to be useful for various types of implants in the dental and orthopedic fields. (C) 2015 Elsevier B.V. All rights reserved.