887 resultados para peripheral nervous system
Resumo:
The nervous system of young and adult Amphilina foliacea was studied with immunocytochemical, electron microscopical and spectrofluorometrical methods. The general neuroanatomy is described in detail. New data on the structure and development of the brain were obtained. The 5-HT and GYIRFamide-immunoreactivities occur in separate sets of neurones. The innervation of the reproductive organs is described. The fine structure of 2 types of neurones in the CNS, a sensory neurone, a 'glial' cell type, the neuropile and the synapses are described. The level of 5-HT varies between 0.074 and 0.461 mug/g wet weight. This is the first detailed study of the nervous system of A. foliacea. Earlier data on the structure of the nervous system in A. foliacea published in Russian are introduced into the discussion. The study provides data that can be used when considering the phylogenetic position of Amphilinidea.
Resumo:
The ultrastructure of the nervous system of a planarian, Procerodes littoralis, belonging to the taxon Maricola is described for the first time. The study has revealed the presence of two neuronal cell types and a glia-like cell. Immunogold labelling with antibodies to two native flatworm neuropeptides-neuropeptide F and GNFFRFamide-has been localised to one neuronal cell type and associated processes and synapses, thus indicating its peptidergic nature. The ultrastructural features are compared to those of other investigated turbellarian species. The number of features shared by species from the Proseriata, Lecitoepitheliata and Tricladida show that in respect of the nervous system these taxa form a closely related group. (C) 1997 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd.
Resumo:
In an immunocytochemical study, using an antiserum and a monoclonal antibody specific for the amino acid, gamma-aminobutyric acid (GABA), GABA-like immunoreactivity (GLIR) has been demonstrated for the first time in parasitic flatworms. In Moniezia expansa (Cestoda), GLIR was seen in nerve nets which were closely associated with the body wall musculature and in the longitudinal nerve cords. In the liver fluke Fasciola hepatica (Trematoda), the GLIR occurred in the longitudinal nerve cords and lateral nerves in the posterior half of the worm. GLIR was also detected in subtegumental fibres in F. hepatica. The presence of GABA was verified, using high-pressure liquid chromatography coupled with fluorescence detection. The concentration of GABA (mean+/-S.D.) in M. expansa anterior region was 124.8+/-15.3 picomole/mg wet weight, while in F. hepatica it was 16.8+/-4.9 picomole/mg. Since several insecticides and anti-nematodal drugs are thought to interfere with GABA-receptors, the findings indicate that GABAergic neurotransmission may be a potential target for chemotherapy in flatworms too.
Resumo:
An electron immunogold-labeling technique was used in conjunction with a post-embedding procedure to demonstrate for the first time the ultrastructural distribution of the parasitic platyhelminth neuropeptide, neuropeptide F (NPF), in the nervous system of the cestode Moniezia expansa. Two axon types, distinguished by their populations of different-sized electron-dense vesicles, were identified. Immunogold labeling demonstrated an apparent homogeneity of PP, FMRFamide and NPF (M. expansa) antigenic sites throughout the larger dense-cored vesicles within the central nervous system. Triple labeling clearly demonstrated the co-localisation of immunoreactivities (IR) for NPF, PP and FMRFamide within the same dense-cored vesicles. The presence of NPF-IR within the vesicles occupying the perikaryon of the neuronal cell body indicated that the peptides had undergone post-translational C-terminal amidation prior to entering the axon. Antigen pre-absorption experiments using NPF prevented labeling with either PP or FMRFamide antisera, and the failure of these antisera to block NPF-IR supports the view that some, if not all, of the PP/FMRFamide-IR is due to NPF-like peptides.
Resumo:
Urotensin II (UII) is traditionally regarded as a product of the neurosecretory cells in the caudal portion of the spinal cord of jawed fishes. A peptide related to UII has been recently isolated from the frog brain, thereby providing the first evidence that UII is also present in the central nervous system of a tetrapod. In the present study, we have investigated the distribution of UII-immunoreactive elements in the brain and spinal cord of the frog Rana ridibunda by immunofluorescence using an antiserum directed against the conserved cyclic region of the peptide. Two distinct populations of UII-immunoreactive perikarya were visualized. The first group of positive neurons was found in the nucleus hypoglossus of the medulla oblongata, which controls two striated muscles of the tongue. The second population of immunoreactive cell bodies was represented by a subset of motoneurons that were particularly abundant in the caudal region of the cord (34% of the motoneuron population). The telencephalon, diencephalon, mesencephalon, and metencephalon were totally devoid of UII-containing cell bodies but displayed dense networks of UII-immunoreactive fibers, notably in the thalamus, the tectum, the tegmentum, and the granular layer of the cerebellum. In addition, a dense bundle of long varicose processes projecting rostrocaudally was observed coursing along the ventral surface of the brain from the midtelencephalon to the medulla oblongata. Reversed-phase high-performance liquid chromatography analysis of frog brain, medulla oblongata, and spinal cord extracts revealed that, in all three regions, UII-immunoreactive material eluted as a single peak which exhibited the same retention time as synthetic frog UII. Taken together, these data indicate that UII, in addition to its neuroendocrine functions in fish, is a potential regulatory peptide in the central nervous system of amphibians. (C) 1996 Wiley-Liss, Inc.