990 resultados para performance constraints
Resumo:
Under ocean acidification (OA), the 200 % increase in CO2(aq) and the reduction of pH by 0.3-0.4 units are predicted to affect the carbon physiology and growth of macroalgae. Here we examined how the physiology of the giant kelp Macrocystis pyrifera is affected by elevated pCO2/low pH. Growth and photosynthetic rates, external and internal carbonic anhydrase (CA) activity, HCO3 (-) versus CO2 use were determined over a 7-day incubation at ambient pCO2 400 µatm/pH 8.00 and a future OA treatment of pCO2 1200 µatm/pH 7.59. Neither the photosynthetic nor growth rates were changed by elevated CO2 supply in the OA treatment. These results were explained by the greater use of HCO3 (-) compared to CO2 as an inorganic carbon (Ci) source to support photosynthesis. Macrocystis is a mixed HCO3 (-) and CO2 user that exhibits two effective mechanisms for HCO3 (-) utilization; as predicted for species that possess carbon-concentrating mechanisms (CCMs), photosynthesis was not substantially affected by elevated pCO2. The internal CA activity was also unaffected by OA, and it remained high and active throughout the experiment; this suggests that HCO3 (-) uptake via an anion exchange protein was not affected by OA. Our results suggest that photosynthetic Ci uptake and growth of Macrocystis will not be affected by elevated pCO2/low pH predicted for the future, but the combined effects with other environmental factors like temperature and nutrient availability could change the physiological response of Macrocystis to OA. Therefore, further studies will be important to elucidate how this species might respond to the global environmental change predicted for the ocean.
Resumo:
The sensitivity of copepods to ocean acidification (OA) and warming may increase with time, however, studies >10 days and on synergistic effects are rare. We therefore incubated late copepodites and females of two dominant Arctic species, Calanus glacialis and Calanus hyperboreus, at 0 °C at 390 and 3000 µatm pCO2 for several months in fall/winter 2010. Respiration rates, body mass and mortality in both species and life stages did not change with pCO2. To detect synergistic effects, in 2011 C. hyperboreus females were kept at different pCO2 and temperatures (0, 5, 10 °C). Incubation at 10 °C induced sublethal stress, which might have overruled effects of pCO2. At 5 °C and 3000 µatm, body carbon was significantly lowest indicating a synergistic effect. The copepods, thus, can tolerate pCO2 predicted for a future ocean, but in combination with increasing temperatures they could be sensitive to OA.
Resumo:
The CoastColour project Round Robin (CCRR) project (http://www.coastcolour.org) funded by the European Space Agency (ESA) was designed to bring together a variety of reference datasets and to use these to test algorithms and assess their accuracy for retrieving water quality parameters. This information was then developed to help end-users of remote sensing products to select the most accurate algorithms for their coastal region. To facilitate this, an inter-comparison of the performance of algorithms for the retrieval of in-water properties over coastal waters was carried out. The comparison used three types of datasets on which ocean colour algorithms were tested. The description and comparison of the three datasets are the focus of this paper, and include the Medium Resolution Imaging Spectrometer (MERIS) Level 2 match-ups, in situ reflectance measurements and data generated by a radiative transfer model (HydroLight). The datasets mainly consisted of 6,484 marine reflectance associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: Total Suspended Matter (TSM) and Chlorophyll-a (CHL) concentrations, and the absorption of Coloured Dissolved Organic Matter (CDOM). Inherent optical properties were also provided in the simulated datasets (5,000 simulations) and from 3,054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three datasets are compared. Match-up and in situ sites where deviations occur are identified. The distribution of the three reflectance datasets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.
Resumo:
Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release.
Resumo:
Rising CO2 levels in the oceans are predicted to have serious consequences for many marine taxa. Recent studies suggest that non-genetic parental effects may reduce the impact of high CO2 on the growth, survival and routine metabolic rate of marine fishes, but whether the parental environment mitigates behavioural and sensory impairment associated with high CO2 remains unknown. Here, we tested the acute effects of elevated CO2 on the escape responses of juvenile fish and whether such effects were altered by exposure of parents to increased CO2 (transgenerational acclimation). Elevated CO2 negatively affected the reactivity and locomotor performance of juvenile fish, but parental exposure to high CO2 reduced the effects in some traits, indicating the potential for acclimation of behavioural impairment across generations. However, acclimation was not complete in some traits, and absent in others, suggesting that transgenerational acclimation does not completely compensate the effects of high CO2 on escape responses.
Resumo:
We show here that increased variability of temperature and pH synergistically negatively affects the energetics of intertidal zone crabs. Under future climate scenarios, coastal ecosystems are projected to have increased extremes of low tide-associated thermal stress and ocean acidification-associated low pH, the individual or interactive effects of which have yet to be determined. To characterize energetic consequences of exposure to increased variability of pH and temperature, we exposed porcelain crabs, Petrolisthes cinctipes, to conditions that simulated current and future intertidal zone thermal and pH environments. During the daily low tide, specimens were exposed to no, moderate or extreme heating, and during the daily high tide experienced no, moderate or extreme acidification. Respiration rate and cardiac thermal limits were assessed following 2.5 weeks of acclimation. Thermal variation had a larger overall effect than pH variation, though there was an interactive effect between the two environmental drivers. Under the most extreme temperature and pH combination, respiration rate decreased while heat tolerance increased, indicating a smaller overall aerobic energy budget (i.e. a reduced O2 consumption rate) of which a larger portion is devoted to basal maintenance (i.e. greater thermal tolerance indicating induction of the cellular stress response). These results suggest the potential for negative long-term ecological consequences for intertidal ectotherms exposed to increased extremes in pH and temperature due to reduced energy for behavior and reproduction.
Resumo:
In natural environments, marine biotas are exposed to a variety of simultaneously acting abiotic factors. Among these, temperature, irradiance and CO2 availability are major factors influencing the physiological performance of marine macroalgae. To test whether elevated levels of CO2 may remediate the otherwise reduced performance of uncalcified seaweeds under the influence of other stressful abiotic factors, we performed multifactorial experiments with the red alga Chondrus crispus from Helgoland (North Sea) with two levels of CO2, temperature and irradiance: low and high pCO2 levels were tested in combination with either (1) optimal and low irradiances or (2) optimal and sub-lethal high temperatures for growth. Performance of C. crispus was evaluated as biomass increase and relative growth rates (RGR), gross photosynthesis and pigment content. Acclimations of growth and photosynthesis were measured after 4 and 8 days. Acclimation time was crucial for elucidating single or combined CO2 effects on growth and photosynthesis. Signifi- cant CO2 effects became evident only in combination with either elevated temperature or reduced irradiance. Growth and photosynthesis had divergent patterns: RGR and biomass significantly increased only under a combination of high pCO2 and elevated temperature; gross photosynthesis was significantly reduced under high pCO2 conditions at low irradiance. Pigment content varied in response to irradiance and temperature, but was independent of pCO2.
Resumo:
An image processing observational technique for the stereoscopic reconstruction of the wave form of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired wave form is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.
Resumo:
Today's motivation for autonomous systems research stems out of the fact that networked environments have reached a level of complexity and heterogeneity that make their control and management by solely human administrators more and more difficult. The optimisation of performance metrics for the air traffic management system, like in other networked system, has become more complex with increasing number of flights, capacity constraints, environmental factors and safety regulations. It is anticipated that a new structure of planning layers and the introduction of higher levels of automation will reduce complexity and will optimise the performance metrics of the air traffic management system. This paper discusses the complexity of optimising air traffic management performance metrics and proposes a way forward based on higher levels of automation.
Design and Simulation of Deep Nanometer SRAM Cells under Energy, Mismatch, and Radiation Constraints
Resumo:
La fiabilidad está pasando a ser el principal problema de los circuitos integrados según la tecnología desciende por debajo de los 22nm. Pequeñas imperfecciones en la fabricación de los dispositivos dan lugar ahora a importantes diferencias aleatorias en sus características eléctricas, que han de ser tenidas en cuenta durante la fase de diseño. Los nuevos procesos y materiales requeridos para la fabricación de dispositivos de dimensiones tan reducidas están dando lugar a diferentes efectos que resultan finalmente en un incremento del consumo estático, o una mayor vulnerabilidad frente a radiación. Las memorias SRAM son ya la parte más vulnerable de un sistema electrónico, no solo por representar más de la mitad del área de los SoCs y microprocesadores actuales, sino también porque las variaciones de proceso les afectan de forma crítica, donde el fallo de una única célula afecta a la memoria entera. Esta tesis aborda los diferentes retos que presenta el diseño de memorias SRAM en las tecnologías más pequeñas. En un escenario de aumento de la variabilidad, se consideran problemas como el consumo de energía, el diseño teniendo en cuenta efectos de la tecnología a bajo nivel o el endurecimiento frente a radiación. En primer lugar, dado el aumento de la variabilidad de los dispositivos pertenecientes a los nodos tecnológicos más pequeños, así como a la aparición de nuevas fuentes de variabilidad por la inclusión de nuevos dispositivos y la reducción de sus dimensiones, la precisión del modelado de dicha variabilidad es crucial. Se propone en la tesis extender el método de inyectores, que modela la variabilidad a nivel de circuito, abstrayendo sus causas físicas, añadiendo dos nuevas fuentes para modelar la pendiente sub-umbral y el DIBL, de creciente importancia en la tecnología FinFET. Los dos nuevos inyectores propuestos incrementan la exactitud de figuras de mérito a diferentes niveles de abstracción del diseño electrónico: a nivel de transistor, de puerta y de circuito. El error cuadrático medio al simular métricas de estabilidad y prestaciones de células SRAM se reduce un mínimo de 1,5 veces y hasta un máximo de 7,5 a la vez que la estimación de la probabilidad de fallo se mejora en varios ordenes de magnitud. El diseño para bajo consumo es una de las principales aplicaciones actuales dada la creciente importancia de los dispositivos móviles dependientes de baterías. Es igualmente necesario debido a las importantes densidades de potencia en los sistemas actuales, con el fin de reducir su disipación térmica y sus consecuencias en cuanto al envejecimiento. El método tradicional de reducir la tensión de alimentación para reducir el consumo es problemático en el caso de las memorias SRAM dado el creciente impacto de la variabilidad a bajas tensiones. Se propone el diseño de una célula que usa valores negativos en la bit-line para reducir los fallos de escritura según se reduce la tensión de alimentación principal. A pesar de usar una segunda fuente de alimentación para la tensión negativa en la bit-line, el diseño propuesto consigue reducir el consumo hasta en un 20 % comparado con una célula convencional. Una nueva métrica, el hold trip point se ha propuesto para prevenir nuevos tipos de fallo debidos al uso de tensiones negativas, así como un método alternativo para estimar la velocidad de lectura, reduciendo el número de simulaciones necesarias. Según continúa la reducción del tamaño de los dispositivos electrónicos, se incluyen nuevos mecanismos que permiten facilitar el proceso de fabricación, o alcanzar las prestaciones requeridas para cada nueva generación tecnológica. Se puede citar como ejemplo el estrés compresivo o extensivo aplicado a los fins en tecnologías FinFET, que altera la movilidad de los transistores fabricados a partir de dichos fins. Los efectos de estos mecanismos dependen mucho del layout, la posición de unos transistores afecta a los transistores colindantes y pudiendo ser el efecto diferente en diferentes tipos de transistores. Se propone el uso de una célula SRAM complementaria que utiliza dispositivos pMOS en los transistores de paso, así reduciendo la longitud de los fins de los transistores nMOS y alargando los de los pMOS, extendiéndolos a las células vecinas y hasta los límites de la matriz de células. Considerando los efectos del STI y estresores de SiGe, el diseño propuesto mejora los dos tipos de transistores, mejorando las prestaciones de la célula SRAM complementaria en más de un 10% para una misma probabilidad de fallo y un mismo consumo estático, sin que se requiera aumentar el área. Finalmente, la radiación ha sido un problema recurrente en la electrónica para aplicaciones espaciales, pero la reducción de las corrientes y tensiones de los dispositivos actuales los está volviendo vulnerables al ruido generado por radiación, incluso a nivel de suelo. Pese a que tecnologías como SOI o FinFET reducen la cantidad de energía colectada por el circuito durante el impacto de una partícula, las importantes variaciones de proceso en los nodos más pequeños va a afectar su inmunidad frente a la radiación. Se demuestra que los errores inducidos por radiación pueden aumentar hasta en un 40 % en el nodo de 7nm cuando se consideran las variaciones de proceso, comparado con el caso nominal. Este incremento es de una magnitud mayor que la mejora obtenida mediante el diseño de células de memoria específicamente endurecidas frente a radiación, sugiriendo que la reducción de la variabilidad representaría una mayor mejora. ABSTRACT Reliability is becoming the main concern on integrated circuit as the technology goes beyond 22nm. Small imperfections in the device manufacturing result now in important random differences of the devices at electrical level which must be dealt with during the design. New processes and materials, required to allow the fabrication of the extremely short devices, are making new effects appear resulting ultimately on increased static power consumption, or higher vulnerability to radiation SRAMs have become the most vulnerable part of electronic systems, not only they account for more than half of the chip area of nowadays SoCs and microprocessors, but they are critical as soon as different variation sources are regarded, with failures in a single cell making the whole memory fail. This thesis addresses the different challenges that SRAM design has in the smallest technologies. In a common scenario of increasing variability, issues like energy consumption, design aware of the technology and radiation hardening are considered. First, given the increasing magnitude of device variability in the smallest nodes, as well as new sources of variability appearing as a consequence of new devices and shortened lengths, an accurate modeling of the variability is crucial. We propose to extend the injectors method that models variability at circuit level, abstracting its physical sources, to better model sub-threshold slope and drain induced barrier lowering that are gaining importance in FinFET technology. The two new proposed injectors bring an increased accuracy of figures of merit at different abstraction levels of electronic design, at transistor, gate and circuit levels. The mean square error estimating performance and stability metrics of SRAM cells is reduced by at least 1.5 and up to 7.5 while the yield estimation is improved by orders of magnitude. Low power design is a major constraint given the high-growing market of mobile devices that run on battery. It is also relevant because of the increased power densities of nowadays systems, in order to reduce the thermal dissipation and its impact on aging. The traditional approach of reducing the voltage to lower the energy consumption if challenging in the case of SRAMs given the increased impact of process variations at low voltage supplies. We propose a cell design that makes use of negative bit-line write-assist to overcome write failures as the main supply voltage is lowered. Despite using a second power source for the negative bit-line, the design achieves an energy reduction up to 20% compared to a conventional cell. A new metric, the hold trip point has been introduced to deal with new sources of failures to cells using a negative bit-line voltage, as well as an alternative method to estimate cell speed, requiring less simulations. With the continuous reduction of device sizes, new mechanisms need to be included to ease the fabrication process and to meet the performance targets of the successive nodes. As example we can consider the compressive or tensile strains included in FinFET technology, that alter the mobility of the transistors made out of the concerned fins. The effects of these mechanisms are very dependent on the layout, with transistor being affected by their neighbors, and different types of transistors being affected in a different way. We propose to use complementary SRAM cells with pMOS pass-gates in order to reduce the fin length of nMOS devices and achieve long uncut fins for the pMOS devices when the cell is included in its corresponding array. Once Shallow Trench isolation and SiGe stressors are considered the proposed design improves both kinds of transistor, boosting the performance of complementary SRAM cells by more than 10% for a same failure probability and static power consumption, with no area overhead. While radiation has been a traditional concern in space electronics, the small currents and voltages used in the latest nodes are making them more vulnerable to radiation-induced transient noise, even at ground level. Even if SOI or FinFET technologies reduce the amount of energy transferred from the striking particle to the circuit, the important process variation that the smallest nodes will present will affect their radiation hardening capabilities. We demonstrate that process variations can increase the radiation-induced error rate by up to 40% in the 7nm node compared to the nominal case. This increase is higher than the improvement achieved by radiation-hardened cells suggesting that the reduction of process variations would bring a higher improvement.
Resumo:
This study attempts to develop performance indicators for the financial markets based on the findings in an earlier Factor Markets Working Paper (No. 33, “Agricultural credit market institutions: A comparison of selected European countries”) and on FADN (Farm Accountancy Data Network) data. Two indicators were developed. One measured the long-term economic sustainability of agricultural firms since the financial characteristics of the firms were perceived as important factors when rejecting a loan applicant. If the indicator works, it should show that a low value in this indicator is related to the performance in the financial markets. The second indicator was the loan-to-value (LTV), or debt-to-asset ratio, the reasoning behind this indicator is that low values can point to credit constraints, and in WP 33 we saw that the interviewed experts expected LTVs to be much higher than what is actually the case. We find that the first indicator can’t be used to measure the performance of the financial institutions, since we can’t show any relationship between the indicator and activities in the financial markets. However, the indicator is valuable for its measurement of the long-term financial sustainability of the agricultural sector, or of the firms. The loan-to-value indicator does imply that most countries would have room to increase the credit.
Resumo:
The fate of key species, such as the barnacle Amphibalanus improvisus, in the course of global change is of particular interest since any change in their abundance and/or performance may entail community-wide effects. In the fluctuating Western Baltic, species typically experience a broad range of environmental conditions, which may preselect them to better cope with climate change. In this study, we examined the sensitivity of two crucial ontogenetic phases (naupliar, cypris) of the barnacle toward a range of temperature (12, 20, and 28°C) and salinity (5, 15, and 30 psu) combinations. Under all salinity treatments, nauplii developed faster at intermediate and high temperatures. Cyprid metamorphosis success, in contrast, was interactively impacted by temperature and salinity. Survival of nauplii decreased with increasing salinity under all temperature treatments. Highest settlement rates occurred at the intermediate temperature and salinity combination, i.e., 20°C and 15 psu. Settlement success of "naive" cyprids, i.e., when nauplii were raised in the absence of stress (20°C/15 psu), was less impacted by stressful temperature/salinity combinations than that of cyprids with a stress history. Here, settlement success was highest at 30 psu particularly at low and high temperatures. Surprisingly, larval survival was not highest under the conditions typical for the Kiel Fjord at the season of peak settlement (20°C/15 psu). The proportion of nauplii that ultimately transformed to attached juveniles was, however, highest under these "home" conditions. Overall, only particularly stressful combinations of temperature and salinity substantially reduced larval performance and development. Given more time for adaptation, the relatively smooth climate shifts predicted will probably not dramatically affect this species.
Resumo:
It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.
Resumo:
While environmental legislation in Australia regulates tourism development, it is less effective in operational areas because of the dependency of tourism on environmental resources that are not managed by operators, and the small but incremental nature of operational impacts. The absence of functional environmental standards for tourism means that little guidance exists: a problem compounded by variability in the diversity of operation types and receiving environments, as well as the accessibility of information by a non-technical audience. While legislation and economic considerations may provide impetus to adopt environmental practices, it is proposed that an environmental philosophy is necessary for tourism businesses to seek out and maintain alternative sustainable modes of operation. Review of the environmental audit process used by a Queensland resort suggests commitment to continual improvement in environmental performance is attributable to individual and corporate ethics. While the case is an ecotourism operation, the literature indicates that these factors have relevance to tourism generally. Although client satisfaction and return on investment objectives are constraints, environmental auditing can provide impetus for practical expression of environmental objectives. Facilitation of ethically-motivated voluntary action may be more effective in achieving tourism's environmental objectives than codifying standards in static legislation.
Resumo:
Based on the observation that bimanual finger tapping movements tend toward mirror symmetry with respect to the body midline, despite the synchronous activation of non-homologous muscles, F. Mechsner, D. Kerzel, G. Knoblich, and W. Prinz (2001) [Perceptual basis of bimanual coordination. Nature, 414, 69-73] suggested that the basis of rhythmic coordination is purely spatial/perceptual in nature, and independent of the neuro-anatomical constraints of the motor system. To investigate this issue further, we employed a four finger tapping task similar to that used by F. Mechsner and G. Knoblich (2004) [Do muscle matter in bimanual coordination? Journal of Experimental Psychology: Human Perception and Performance, 30, 490-503] in which six male participants were required to alternately tap combinations of adjacent pairs of index (1), middle (M) and ring (R) fingers of each hand in time with an auditory metronome. The metronome pace increased continuously from 1 Hz to 3 Hz over the course of a 30-s trial. Each participant performed three blocks of trials in which finger combination for each hand (IM or MR) and mode of coordination (mirror or parallel) were presented in random order. Within each block, the right hand was placed in one of three orientations; prone, neutral and supine. The order of blocks was counterbalanced across the six participants. The left hand maintained a prone position throughout the experiment. On the basis of discrete relative phase analyses between synchronised taps, the time at which the initial mode of coordination was lost was determined for each trial. When the right hand was prone, transitions occurred only from parallel symmetry to mirror symmetry, regardless of finger combination. In contrast, when the right hand was supine, transitions occurred only from mirror symmetry to parallel but no transitions were observed in the opposite direction. In the right hand neutral condition, mirror and parallel symmetry are insufficient to describe the modes of coordination since the hands are oriented orthogonally. When defined anatomically, however, the results in each of the three right hand orientations are consistent. That is, synchronisation of finger tapping is deter-mined by a hierarchy of control of individual fingers based on their intrinsic neuro-mechanical properties rather than on the basis of their spatial orientation. (c) 2005 Elsevier B.V. All rights reserved.