932 resultados para pentaquark Theta( )
Resumo:
Neurocognitive models propose a specialized neural system for processing threat-related information, in which the amygdala plays a key role in the analysis of threat cues. fMRI research indicates that the amygdala is sensitive to coarse visual threat relevant information—for example, low spatial frequency (LSF) fearful faces. However, fMRI cannot determine the temporal or spectral characteristics of neural responses. Consequently, we used magnetoencephalography to explore spatiotemporal patterns of activity in the amygdala and cortical regions with blurry (LSF) and normal angry, fearful, and neutral faces. Results demonstrated differences in amygdala activity between LSF threat-related and LSF neutral faces (50-250 msec after face onset). These differences were evident in the theta range (4-8 Hz) and were accompanied by power changes within visual and frontal regions. Our results support the view that the amygdala is involved in the early processing of coarse threat related information and that theta is important in integrating activity within emotion-processing networks.
Resumo:
Altered state theories of hypnosis posit that a qualitatively distinct state of mental processing, which emerges in those with high hypnotic susceptibility following a hypnotic induction, enables the generation of anomalous experiences in response to specific hypnotic suggestions. If so then such a state should be observable as a discrete pattern of changes to functional connectivity (shared information) between brain regions following a hypnotic induction in high but not low hypnotically susceptible participants. Twenty-eight channel EEG was recorded from 12 high susceptible (highs) and 11 low susceptible (lows) participants with their eyes closed prior to and following a standard hypnotic induction. The EEG was used to provide a measure of functional connectivity using both coherence (COH) and the imaginary component of coherence (iCOH), which is insensitive to the effects of volume conduction. COH and iCOH were calculated between all electrode pairs for the frequency bands: delta (0.1-3.9 Hz), theta (4-7.9 Hz) alpha (8-12.9 Hz), beta1 (13-19.9 Hz), beta2 (20-29.9 Hz) and gamma (30-45 Hz). The results showed that there was an increase in theta iCOH from the pre-hypnosis to hypnosis condition in highs but not lows with a large proportion of significant links being focused on a central-parietal hub. There was also a decrease in beta1 iCOH from the pre-hypnosis to hypnosis condition with a focus on a fronto-central and an occipital hub that was greater in high compared to low susceptibles. There were no significant differences for COH or for spectral band amplitude in any frequency band. The results are interpreted as indicating that the hypnotic induction elicited a qualitative change in the organization of specific control systems within the brain for high as compared to low susceptible participants. This change in the functional organization of neural networks is a plausible indicator of the much theorized "hypnotic-state". © 2014 Jamieson and Burgess.
Resumo:
While some aspects of social processing are shared between humans and other species, some aspects are not. The former seems to apply to merely tracking another's visual perspective in the world (i.e., what a conspecific can or cannot perceive), while the latter applies to perspective taking in form of mentally “embodying” another's viewpoint. Our previous behavioural research had indicated that only perspective taking, but not tracking, relies on simulating a body schema rotation into another's viewpoint. In the current study we employed Magnetoencephalography (MEG) and revealed that this mechanism of mental body schema rotation is primarily linked to theta oscillations in a wider brain network of body-schema, somatosensory and motor-related areas, with the right posterior temporo-parietal junction (pTPJ) at its core. The latter was reflected by a convergence of theta oscillatory power in right pTPJ obtained by overlapping the separately localised effects of rotation demands (angular disparity effect), cognitive embodiment (posture congruence effect), and basic body schema involvement (posture relevance effect) during perspective taking in contrast to perspective tracking. In a subsequent experiment we interfered with right pTPJ processing using dual pulse Transcranial Magnetic Stimulation (dpTMS) and observed a significant reduction of embodied processing. We conclude that right TPJ is the crucial network hub for transforming the embodied self into another's viewpoint, body and/or mind, thus, substantiating how conflicting representations between self and other may be resolved and potentially highlighting the embodied origins of high-level social cognition in general.
Resumo:
When required to represent a perspective that conflicts with one's own, functional magnetic resonance imaging (fMRI) suggests that the right ventrolateral prefrontal cortex (rvlPFC) supports the inhibition of that conflicting self-perspective. The present task dissociated inhibition of self-perspective from other executive control processes by contrasting belief reasoning-a cognitive state where the presence of conflicting perspectives was manipulated-with a conative desire state wherein no systematic conflict existed. Linear modeling was used to examine the effect of continuous theta burst stimulation (cTBS) to rvlPFC on participants' reaction times in belief and desire reasoning. It was anticipated that cTBS applied to rvlPFC would affect belief but not desire reasoning, by modulating activity in the Ventral Attention System (VAS). We further anticipated that this effect would be mediated by functional connectivity within this network, which was identified using resting state fMRI and an unbiased model-free approach. Simple reaction-time analysis failed to detect an effect of cTBS. However, by additionally modeling individual measures from within the stimulated network, the hypothesized effect of cTBS to belief (but, importantly, not desire) reasoning was demonstrated. Structural morphology within the stimulated region, rvlPFC, and right temporoparietal junction were demonstrated to underlie this effect. These data provide evidence that inconsistencies found with cTBS can be mediated by the composition of the functional network that is being stimulated. We suggest that the common claim that this network constitutes the VAS explains the effect of cTBS to this network on false belief reasoning. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.
Resumo:
TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.
Resumo:
TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.
Resumo:
The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making
Resumo:
TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.
Resumo:
TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.
Resumo:
The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making
Resumo:
Recent reports in human demonstrate a role of theta– gamma coupling in memory for spatial episodes and a lack of coupling in people experiencing temporal lobe epilepsy, but the mechanisms are unknown. Using multisite silicon probe recordings of epileptic rats engaged in episodic-like object recognition tasks, we sought to evaluate the role of theta– gamma coupling in the absence of epileptiform activities. Our data reveal a specific association between theta– gamma (30 – 60 Hz) coupling at the proximal stratum radiatum of CA1 and spatial memory deficits. We targeted the microcircuit mechanisms with a novel approach to identify putative interneuronal types in tetrode recordings (parvalbumin basket cells in particular) and validated classification criteria in the epileptic context with neurochemical identification of intracellularly recorded cells. In epileptic rats, putative parvalbumin basket cells fired poorly modulated at the falling theta phase, consistent with weaker inputs from Schaffer collaterals and attenuated gamma oscillations, as evaluated by theta-phase decomposition of current–source density signals. We propose that theta– gamma interneuronal rhythmopathies of the temporal lobe are intimately related to episodic memory dysfunction in this condition.
Resumo:
Purpose: To evaluate the psychometric properties of a Chinese version of the Diabetes Coping Measure (DCM-C) scale.----- Methods: A self-administered questionnaire was completed by 205 people with type 2 diabetes from the endocrine outpatient departments of three hospitals in Taiwan. Confirmatory factor analysis, criterion validity, and internal consistency reliability were conducted to evaluate the psychometric properties of the DCM-C.----- Findings: Confirmatory factor analysis confirmed a four-factor structure (χ2 /df ratio=1.351, GFI=.904, CFI=.902, RMSEA=.041). The DCM-C was significantly associated with HbA1c and diabetes self-care behaviors. Internal consistency reliability of the total DCM-C scale was .74. Cronbach’s alpha coefficients for each subscale of the DCM-C ranged from .37 (tackling spirit) to .66 (diabetes integration).----- Conclusions: The DCM-C demonstrated satisfactory reliability and validity to determine the use of diabetes coping strategies. The tackling spirit dimension needs further refinement when applies this scale to Chinese populations with diabetes.----- Clinical Relevance: Healthcare providers who deal with Chinese people with diabetes can use the DCM-C to implement an early determination of diabetes coping strategies.