996 resultados para peak current


Relevância:

60.00% 60.00%

Publicador:

Resumo:

First, the direct and indirect electrochemical oxidation of ammonia has been studied by cyclic voltammetry at glassy carbon electrodes in propylene carbonate. In the case of the indirect oxidation of ammonia, its analytical utility of indirect for ammonia sensing was examined in the range from 10 and 100 ppm by measuring the peak current of new wave resulting from reaction between ammonia and hydroquinone, as function of ammonia concentration, giving a sensitivity 1.29 x 10(-7) A ppm(-1) (r(2)=0.999) and limit-of-detection 5 ppm ammonia. Further, the direct oxidation of ammonia has been investigated in several room temperature ionic liquids (RTILs), namely 1-butyl-3-methylimidazolium tetrafluoroborate ([C(4)mim] [BF4]), 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim] [OTf]), 1-Ethyl -3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(2)mim] [NTf2]), 1-butyl-3-methylimidazolium bis(tritluoromethylsulfonyl)imide ([C4mim] [NTf2]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim] [PF6]) on a 10 put diameter Pt microdisk electrode. In four of the RTILs studied, the cyclic voltammetric analysis suggests that ammonia is initially oxidized to nitrogen, N-2, and protons, which are transferred to an ammonia molecule, forming NH4+ via the protonation of the anion(s) (A(-)). However, in [C4mim] [PF6], the protonated anion was formed first, followed by NH4+. In all five RTILs, both HA and NH4+ are reduced at the electrode surface, forming hydrogen gas, which is then oxidized. The analytical ability of this work has also been explored further, giving a limit-of-detection close to 50 ppm in [C(2)mim] [NTf2], [C(4)mim] [OTf], [C(4)mim] [BF4], with a sensitivity of ca. 6 x 10(-7) A ppm(-1) (r(2) = 0.999) for all three ionic liquids, showing that the limit of detection was ca. ten times larger than that in propylene carbonate since ammonia in propylene carbonate might be more soluble in comparison with RTILs when considering the higher viscosity of RTILs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, low loading platinum nanoparticles (Pt NPs) have been highly dispersed on reduced graphene oxide-supported WC nanocrystallites (Pt-WC/RGO) via program-controlled reduction-carburization technique and microwave-assisted method. The scanning electron microscopy and transmission electron microscopy results show that WC nanocrystallites are homogeneously decorated on RGO, and Pt NPs with a size of ca. 3 nm are dispersed on both RGO and WC. The prepared Pt-WC/RGO is used as an electrocatalyst for methanol oxidation reaction (MOR). Compared with the Pt/RGO, commercial carbon-supported Pt (Pt/C) and PtRu alloy (PtRu/C) electrocatalysts, the Pt-WC/RGO composites demonstrate higher electrochemical active surface area and excellent electrocatalytic activity toward the methanol oxidation, such as better tolerance toward CO, higher peak current density, lower onset potential and long-term stability, which could be attributed to the characterized RGO support, highly dispersed Pt NPs and WC nanocrystallites and the valid synergistic effect resulted from the increased interface between WC and Pt. The present work proves that Pt-WC/RGO composites could be a promising alternative catalyst for direct methanol fuel cells where WC plays the important role as a functional additive in preparing Pt-based catalysts because of its CO tolerance and lower price. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclic voltammograms of quinones were recorded in acetonitrile in the presence of various substrates: carbonyl compounds, halobenzenes, Methyl Viologen and Neutral Red. When illuminated with light of λ >410 nm, catalytic waves were observed. From the ratio of the catalysed to uncatalysed peak current, electron transfer rate constants were calculated using the working curves of Saveant and coworkers. The values of these rate constants were compared with the values obtained by Shukla and Rusling for different systems using a similar method and with quenching rate constants calculated using Rehm-Weller-Marcus theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AMPA receptors are tetrameric glutamate-gated ion channels that mediate fast synaptic neurotransmission in mammalian brain. Their subunits contain a two-lobed N-terminal domain (NTD) that comprises over 40% of the mature polypeptide. The NTD is not obligatory for the assembly of tetrameric receptors, and its functional role is still unclear. By analyzing full-length and NTD-deleted GluA1-4 AMPA receptors expressed in HEK 293 cells, we found that the removal of the NTD leads to a significant reduction in receptor transport to the plasma membrane, a higher steady state-to-peak current ratio of glutamate responses, and strongly increased sensitivity to glutamate toxicity in cell culture. Further analyses showed that NTD-deleted receptors display both a slower onset of desensitization and a faster recovery from desensitization of agonist responses. Our results indicate that the NTD promotes the biosynthetic maturation of AMPA receptors and, for membrane-expressed channels, enhances the stability of the desensitized state. Moreover, these findings suggest that interactions of the NTD with extracellular/synaptic ligands may be able to fine-tune AMPA receptor-mediated responses, in analogy with the allosteric regulatory role demonstrated for the NTD of NMDA receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reduction of luvastatin (FLV) at a hanging mercury-drop electrode (HMDE) was studied by square-wave adsorptive-stripping voltammetry (SWAdSV). FLV can be accumulated and reduced at the electrode, with a maximum peak current intensity at a potential of approximately 1.26V vs. AgCl=Ag, in an aqueous electrolyte solution of pH 5.25. The method shows linearity between peak current intensity and FLV concentration between 1.0 10 8 and 2.7 10 6 mol L 1. Limits of detection (LOD) and quantification (LOQ) were found to be 9.9 10 9 mol L 1 and 3.3 10 8 mol L 1, respectively. Furthermore, FLV oxidation at a glassy carbon electrode surface was used for its hydrodynamic monitoring by amperometric detection in a flow-injection system. The amperometric signal was linear with FLV concentration over the range 1.0 10 6 to 1.0 10 5 mol L 1, with an LOD of 2.4 10 7 mol L 1 and an LOQ of 8.0 10 7 mol L 1. A sample rate of 50 injections per hour was achieved. Both methods were validated and showed to be precise and accurate, being satisfactorily applied to the determination of FLV in a commercial pharmaceutical.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical behavior of citalopram was studied by square-wave and square-wave adsorptive-stripping voltammetry (SWAdSV). Citalopram can be reduced and accumulated at a mercury drop electrode, with a maximum peak current intensity being obtained at a potential of approximately -1.25V vs. AgCl/Ag, in an aqueous electrolyte solution of pH 12. A SWAdSV method has been developed for the determination of citalopram in pharmaceutical preparations. The method shows a linear range between 1.0x10-7 and 2.0x10-6 mol L-1 with a limit of detection of 5x10-8 mol L-1 for an accumulation time of 30 s. The precision of the method was evaluated by assessing the repeatability and intermediate precision, achieving good relative standard deviations in all cases (≤2.3%). The proposed method was applied to the determination of citalopram in five pharmaceutical products and the results obtained are in good agreement with the labeled values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluvoxamine (FVX) can be reduced at a mercury- drop electrode, with a maximum peak current intensity being obtained at a potential of -0.7 V vs. Ag/ AgCl, in an aqueous electrolyte solution of pH 2. The compound was determined in a pharmaceutical product and in spiked human serum by square-wave adsorptivestripping voltammetry (SWAdSV) after accumulation at the electrode surface, under batch conditions. Because the presence of dissolved oxygen did not interfere significantly with the analysis, it was also possible to determine FVX in the pharmaceutical product by use of a flow-injection analysis (FIA) system with SWAdSV detection. The methods developed were validated and successfully applied to the quantification of FVX in a pharmaceutical product. Recoveries between 76 and 89% were obtained in serum analysis. The FIA– SWAdSV method enabled analysis of up to 120 samples per hour at reduced cost, implying the possibility of competing with the chromatographic methods usually used for this analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aflowinjection squarewave cathodic stripping voltammetric method has been developed for the determination of sertraline in a pharmaceutical preparation. The method shows linearity between peak current intensity and sertraline concentration for the interval between 0.20×10−6 and 1.20×10−6 mol L−1. Limits of detection and quantification were found to be 1.5×10−7 and 5.0×10−7 mol L−1, respectively. Up to 70 samples per hour can be analysed with a good precision (R.S.D. = 2.5%). The proposed method was successfully applied to the determination of sertraline in a commercial product. In the voltammetric determination of sertraline in flow, a high sample rate is obtained at reduced costs, opening the possibility to compete with the chromatographic methods generally used for this analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo Energia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Voltage-gated sodium channels (Nav1.x) are important players in chronic pain. A particular interest has grown in Nav1.7, expressed in nociceptors, since mutations in its gene are associated to two inherited pain syndromes or insensitivity to pain. Rufinamide, a drug used to treat refractory epilepsy such as the Lennox-Gastaut syndrome, has been shown to reduce the number of action potentials in cortical neurons without completely blocking Na channels. Aim: The goal of this study was to investigate the effect of rufinamide on Nav1.7 current. Methods and results: Whole-cell patch clamp experiments were performed using HEK293 cells stably expressing Nav1.7. Rufinamide significantly decreased peak sodium current by 28.3, 21.2 and 12.5% at concentrations of 500, 100 and 50μM respectively (precise EC50 could not be calculated since higher rufinamide concentrations could not be achieved in physiological buffer solution). No significant difference on the V1/2 of voltage-dependence of activation was seen; however a shift in the steady-state inactivation curve was observed (-82.6 mV to -88.8 mV and -81.8 to -87.6 mV for 50 and 100 μM rufinamide respectively, p <0.005). Frequency-dependent inhibition of Nav1.7 was also influenced by the drug. One hundred μM rufinamide reduced the peak sodium current (in % of the peak current taken at the first sweep of a train of 50) from 90.8 to 80.8% (5Hz), 88.7 to 71.8% (10 Hz), 69.1 to 49.2% (25 Hz) and 22.3 to 9.8% (50 Hz) (all p <0.05). Onset of fast inactivation was not influenced by the drug since no difference in the time constant of current decay was observed. Conclusion: In the concentration range of plasma level in human treated for epilepsy, 15 μM, rufinamide only minimally blocks Nav1.7. However, it stabilizes the inactivated state and exerts frequencydependent inhibition of Nav1.7. These pharmacological properties may be of use in reducing ectopic discharges as a causal and symptom related contributor of neuropathic pain syndrome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les canaux calciques de type L CaV1.2 sont principalement responsables de l’entrée des ions calcium pendant la phase plateau du potentiel d’action des cardiomyocytes ventriculaires. Cet influx calcique est requis pour initier la contraction du muscle cardiaque. Le canal CaV1.2 est un complexe oligomérique qui est composé de la sous-unité principale CaVα1 et des sous-unités auxiliaires CaVβ et CaVα2δ1. CaVβ joue un rôle déterminant dans l’adressage membranaire de la sous-unité CaVα1. CaVα2δ1 stabilise l’état ouvert du canal mais le mécanisme moléculaire responsable de cette modulation n’a pas été encore identifié. Nous avons récemment montré que cette modulation requiert une expression membranaire significative de CaVα2δ1 (Bourdin et al. 2015). CaVα2δ1 est une glycoprotéine qui possède 16 sites potentiels de glycosylation de type N. Nous avons donc évalué le rôle de la glycosylation de type-N dans l’adressage membranaire et la stabilité de CaVα2δ1. Nous avons d’abord confirmé que la protéine CaVα2δ1 recombinante, telle la protéine endogène, est significativement glycosylée puisque le traitement à la PNGase F se traduit par une diminution de 50 kDa de sa masse moléculaire, ce qui est compatible avec la présence de 16 sites Asn. Il s’est avéré par ailleurs que la mutation simultanée de 6/16 sites (6xNQ) est suffisante pour 1) réduire significativement la densité de surface de! CaVα2δ1 telle que mesurée par cytométrie en flux et par imagerie confocale 2) accélérer les cinétiques de dégradation telle qu’estimée après arrêt de la synthèse protéique et 3) diminuer la modulation fonctionnelle des courants générés par CaV1.2 telle qu’évaluée par la méthode du « patch-clamp ». Les effets les plus importants ont toutefois été obtenus avec les mutants N663Q, et les doubles mutants N348Q/N468Q, N348Q/N812Q, N468Q/N812Q. Ensemble, ces résultats montrent que Asn663 et à un moindre degré Asn348, Asn468 et Asn812 contribuent à la biogenèse et la stabilité de CaVα2δ1 et confirment que la glycosylation de type N de CaVα2δ1 est nécessaire à la fonction du canal calcique cardiaque de type L.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A metalloporphyrin incorporated carbon paste sensor has been developed for the determination of metronidazole benzoate (MTZB). Zn(II) complex of 5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrin (TMHPP) was used as the active material. The MTZB gave a well-defined reduction peak at - 0.713V in 0.1 mol l -1 phosphate buffer solution of pH around 7. Compared with bare carbon paste electrode (CPE), the TMHPP Zn(II) modified electrode significantly enhanced the reduction peak current of MTZB as well as lowered its reduction potential. Under optimum conditions the reduction peak current was proportional to MTZB concentration over the range 1×10-3 mol1-1 to 1×10-5mol1-1. The detection limit was found to be 4.36×10-6mol1-1 . This sensor has been successfully applied for the determination of MTZB in pharmaceutical formulations and urine samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A differential pulse voltammetric sensor for the determination of tamsulosin hydrochloride (TAM) using multiwalled carbon nanotubes (MWNTs)–Nafion-modified glassy carbon electrode (GCE) has been developed. MWNTs were dispersed in water with the help of Nafion and were used to modify the surface of GCE via solvent evaporation. At MWNT-modified electrode, TAM gave a well-defined oxidation peak at a potential of 1084 mV in 0.1 M acetate buffer solution of pH 5. Compared to the bare electrode, the peak current of TAM showed a marked increase and the peak potential showed a negative deviation. The determination conditions, such as the amount of MWNT–Nafion suspension, pH of the supporting electrolyte and scan rate, were optimised. Under optimum conditions, the oxidation peak current was proportional to the concentration of TAM in the range 1 × 1023 M–3 × 1027 M with a detection limit of 9.8 × 1028 M. The developed sensor showed good stability, selectivity and was successfully used for the determination of TAM in pharmaceutical formulations and urine samples

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sub-lethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na+ channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits peak human Nav1.5 current amplitude without activation of the late Na+ current observed in native tissue. Inhibition was associated with a hyperpolarizing shift in the steady-state inactivation properties of the channels and was unaffected by modification of channel gating induced by anemone toxin (rATX-II). Systematic pharmacological assessment indicated that no recognised CO-sensitive intracellular signalling pathways appeared to mediate CO inhibition of Nav1.5. Inhibition was, however, markedly suppressed by inhibition of nitric oxide (NO) formation, but NO donors did not mimic or occlude channel inhibition by CO, indicating that NO alone did not account for the actions of CO. Exposure of cells to dithiothreitol immediately before CO exposure also dramatically reduced the magnitude of current inhibition. Similarly, L-cysteine and N-ethylmaleimide significantly attenuated the inhibition caused by CO. In the presence of DTT and the NO inhibitor L-NAME, the ability of CO to inhibit Nav1.5 was almost fully prevented. Our data indicate that inhibition of peak Na+ current (which can lead to Brugada-syndrome like arrhythmias) occurs via a mechanism distinct from induction of the late current, requires NO formation and is dependent on channel redox state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assembly of carbon nanotubes (CNTs) into nanostructured films is attractive for producing functionalized hybrid materials and (bio-)chemical sensors, but this requires experimental methods that allow for control of molecular architecturcs. In this study, we exploit the layer-by-layer (LbL) technique to obtain two types of sensors incorporating CNTs. In the first, LbL films of alternating layers of multi-walled carbon nanotubes (MWNTs) dispersed in polyarninoamide (PAMAM) dendrimers and nickel phthalocyanine (NiTsPc) were used in amperometric detection of the neurotransmitter dopamine (DA). The electrochemical properties evaluated with cyclic voltammetry indicated that the incorporation of MWNTs in the PAMAM-NT/NiTsPc LbL films led to a 3-fold increase in the peak current, in addition to a decrease of 50 mV in the oxidation potential of DA. The latter allowed detection of DA even in the presence of ascorbic acid (AA), a typical interferent for DA. Another LbL film was obtained with layers of PAMAM and single-walled carbon nanotubes (SWNTs) employed in field-effect-devices using a capacitive electrolyte-insulator-semiconductor structure (EIS). The adsorption of the film components was monitored by measuring the flat-band voltage shift in capacitance-voltage (C-P) curves, caused by the charges from the components. Constant capacitance (ConCap) measurements showed that the EISPAMAM/SWNT film displayed a high pH sensitivity (ca. 54.5 mV/pH), being capable of detecting penicillin G between 10(-4) mol L(-1) and 10(-2) mol L-1, when a layer of penicillinase was adsorbed atop the PAMAM/SWNT film. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.