832 resultados para partial least square modeling
Resumo:
O trabalho tem sido visto não somente como forma de obter a renda, mas também como atividade que proporciona realização pessoal, status social e possibilidade de estabelecer e manter contatos interpessoais, entre outros. Nesta pesquisa, teve-se como objetivo investigar os fatores que influenciam e conferem sentido ao trabalho, como centralidade do trabalho, normas da sociedade e objetivos e resultados valorizados. Na centralidade do trabalho, procurou-se investigar o grau de importância do trabalho dentro do contexto das diversas áreas da vida das pessoas, como família, lazer, religião e vida comunitária. Em normas da sociedade, foram analisados os pontos mais significativos no tocante ao que a sociedade deveria proporcionar ao indivíduo, assim como o que o indivíduo deveria fazer em prol da sociedade. Nos objetivos e resultados valorizados, foi pesquisado o que as pessoas buscam com o trabalho. A partir da pesquisa na literatura, foi elaborado um modelo inicial que, não se mostrando satisfatório segundo critérios estatísticos, foi substituído por outro que apresentou significância estatística e boa aderência aos dados. O modelo escolhido foi o que melhor goodness-of-fit apresentou, quando se utilizou modelagem de equações estruturais pelo método partial least square. O estudo revelou que o significado do trabalho se reflete, na ordem, na centralidade do trabalho, nos objetivos e resultados valorizados e, por último, nas normas sociais.
Resumo:
Controlling the dissemination of malaria requires the development of new drugs against its etiological agent, a protozoan of the Plasmodium genus. Angiotensin II and its analog peptides exhibit activity against the development of immature and mature sporozoites of Plasmodium gallinaceum. In this study, we report the synthesis and characterization of angiotensin II linear and cyclic analogs with anti-plasmodium activity. The peptides were synthesized by a conventional solid-phase method on Merrifield's resin using the t-Boc strategy, purified by RP-HPLC and characterized by liquid chromatography/ESI (+) MS (LC-ESI(+)/MS), amino acid analysis, and capillary electrophoresis. Anti-plasmodium activity was measured in vitro by fluorescence microscopy using propidium iodine uptake as an indicator of cellular damage. The activities of the linear and cyclic peptides are not significantly different (p < 0.05). Kinetics studies indicate that the effects of these peptides on plasmodium viability overtime exhibit a sigmoidal profile and that the system stabilizes after a period of 1 h for all peptides examined. The results were rationalized by partial least-square analysis, assessing the position-wise contribution of each amino acid. The highest contribution of polar amino acids and a Lys residue proximal to the C-terminus, as well as that of hydrophobic amino acids in the N-terminus, suggests that the mechanism underlying the anti-malarial activity of these peptides is attributed to its amphiphilic character.
Resumo:
Soil spectroscopy was applied for predicting soil organic carbon (SOC) in the highlands of Ethiopia. Soil samples were acquired from Ethiopia’s National Soil Testing Centre and direct field sampling. The reflectance of samples was measured using a FieldSpec 3 diffuse reflectance spectrometer. Outliers and sample relation were evaluated using principal component analysis (PCA) and models were developed through partial least square regression (PLSR). For nine watersheds sampled, 20% of the samples were set aside to test prediction and 80% were used to develop calibration models. Depending on the number of samples per watershed, cross validation or independent validation were used.The stability of models was evaluated using coefficient of determination (R2), root mean square error (RMSE), and the ratio performance deviation (RPD). The R2 (%), RMSE (%), and RPD, respectively, for validation were Anjeni (88, 0.44, 3.05), Bale (86, 0.52, 2.7), Basketo (89, 0.57, 3.0), Benishangul (91, 0.30, 3.4), Kersa (82, 0.44, 2.4), Kola tembien (75, 0.44, 1.9),Maybar (84. 0.57, 2.5),Megech (85, 0.15, 2.6), andWondoGenet (86, 0.52, 2.7) indicating that themodels were stable. Models performed better for areas with high SOC values than areas with lower SOC values. Overall, soil spectroscopy performance ranged from very good to good.
Resumo:
Over the past few decades, the advantages of the visible-near infra-red (VisNIR) diffuse reflectance spectrometer (DRS) method have enabled prediction of soil organic carbon (SOC). In this study, SOC was predicted using regression models for samples taken from three sites (Gununo, Maybar and Anjeni) in Ethiopia. SOC was characterized in laboratory using conventional wet chemistry and VisNIR-DRS methods. Principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS) models were developed using Unscrambler X 10.2. PCA results show that the first two components accounted for a minimum of 96% variation which increased for individual sites and with data treatments. Correlation (r), coefficient of determination (R2) and residual prediction deviation (RPD) were used to rate four models built. PLS model (r, R2, RPD) values for Anjeni were 0.9, 0.9 and 3.6; for Gununo values 0.6, 0.3 and 1.2; for Maybar values 0.6, 0.3 and 0.9, and for the three sites values 0.7, 0.6 and 1.5, respectively. PCR model values (r, R2, RPD) for Anjeni were 0.9, 0.8 and 2.7; for Gununo values 0.5, 0.3 and 1; for Maybar values 0.5, 0.1 and 0.7, and for the three sites values 0.7, 0.5 and 1.2, respectively. Comparison and testing of models shows superior performance of PLS to PCR. Models were rated as very poor (Maybar), poor (Gununo and three sites) and excellent (Anjeni). A robust model, Anjeni, is recommended for prediction of SOC in Ethiopia.
Resumo:
Chrysophyte cysts are recognized as powerful proxies of cold-season temperatures. In this paper we use the relationship between chrysophyte assemblages and the number of days below 4 °C (DB4 °C) in the epilimnion of a lake in northern Poland to develop a transfer function and to reconstruct winter severity in Poland for the last millennium. DB4 °C is a climate variable related to the length of the winter. Multivariate ordination techniques were used to study the distribution of chrysophytes from sediment traps of 37 low-land lakes distributed along a variety of environmental and climatic gradients in northern Poland. Of all the environmental variables measured, stepwise variable selection and individual Redundancy analyses (RDA) identified DB4 °C as the most important variable for chrysophytes, explaining a portion of variance independent of variables related to water chemistry (conductivity, chlorides, K, sulfates), which were also important. A quantitative transfer function was created to estimate DB4 °C from sedimentary assemblages using partial least square regression (PLS). The two-component model (PLS-2) had a coefficient of determination of View the MathML sourceRcross2 = 0.58, with root mean squared error of prediction (RMSEP, based on leave-one-out) of 3.41 days. The resulting transfer function was applied to an annually-varved sediment core from Lake Żabińskie, providing a new sub-decadal quantitative reconstruction of DB4 °C with high chronological accuracy for the period AD 1000–2010. During Medieval Times (AD 1180–1440) winters were generally shorter (warmer) except for a decade with very long and severe winters around AD 1260–1270 (following the AD 1258 volcanic eruption). The 16th and 17th centuries and the beginning of the 19th century experienced very long severe winters. Comparison with other European cold-season reconstructions and atmospheric indices for this region indicates that large parts of the winter variability (reconstructed DB4 °C) is due to the interplay between the oscillations of the zonal flow controlled by the North Atlantic Oscillation (NAO) and the influence of continental anticyclonic systems (Siberian High, East Atlantic/Western Russia pattern). Differences with other European records are attributed to geographic climatological differences between Poland and Western Europe (Low Countries, Alps). Striking correspondence between the combined volcanic and solar forcing and the DB4 °C reconstruction prior to the 20th century suggests that winter climate in Poland responds mostly to natural forced variability (volcanic and solar) and the influence of unforced variability is low.
Resumo:
The objective of this study was to assess the potential of visible and near infrared spectroscopy (VIS+NIRS) combined with multivariate analysis for identifying the geographical origin of cork. The study was carried out on cork planks and natural cork stoppers from the most representative cork-producing areas in the world. Two training sets of international and national cork planks were studied. The first set comprised a total of 479 samples from Morocco, Portugal, and Spain, while the second set comprised a total of 179 samples from the Spanish regions of Andalusia, Catalonia, and Extremadura. A training set of 90 cork stoppers from Andalusia and Catalonia was also studied. Original spectroscopic data were obtained for the transverse sections of the cork planks and for the body and top of the cork stoppers by means of a 6500 Foss-NIRSystems SY II spectrophotometer using a fiber optic probe. Remote reflectance was employed in the wavelength range of 400 to 2500 nm. After analyzing the spectroscopic data, discriminant models were obtained by means of partial least square (PLS) with 70% of the samples. The best models were then validated using 30% of the remaining samples. At least 98% of the international cork plank samples and 95% of the national samples were correctly classified in the calibration and validation stage. The best model for the cork stoppers was obtained for the top of the stoppers, with at least 90% of the samples being correctly classified. The results demonstrate the potential of VIS + NIRS technology as a rapid and accurate method for predicting the geographical origin of cork plank and stoppers
Resumo:
Marine organic matter (OM) sinks from surface waters to the seafloor via the biological pump. Benthic communities, which use this sedimented OM as energy and carbon source, produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. We hypothesized that in the oligotrophic deep Arctic basin the molecular signal of freshly deposited primary produced OM is restricted to the surface sediment pore waters which should differ from bottom water and deeper sediment pore water in DOM composition. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether the signal of marine vs. terrigenous DOM is represented by different compounds preserved in the sediment pore waters and 3) whether there is any relation between Arctic Ocean ice cover and DOM composition. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer, were correlated with environmental parameters by partial least square analysis. The fresher marine detrital OM signal from surface waters was limited to pore waters from < 5 cm sediment depth. The productive ice margin stations showed higher abundances of peptides, unsaturated aliphatics and saturated fatty acids formulae, indicative of fresh OM/pigments deposition, compared to northernmost stations which had stronger aromatic signals. This study contributes to the understanding of the coupling between the Arctic Ocean productivity and its depositional regime, and how it will be altered in response to sea ice retreat and increasing river runoff.
Resumo:
Two energy grass species, switch grass, a North American tuft grass, and reed canary grass, a European native, are likely to be important sources of biomass in Western Europe for the production of biorenewable energy. Matching chemical composition to conversion efficiency is a primary goal for improvement programmes and for determining the quality of biomass feed-stocks prior to use and there is a need for methods which allow cost effective characterisation of chemical composition at high rates of sample through-put. In this paper we demonstrate that nitrogen content and alkali index, parameters greatly influencing thermal conversion efficiency, can be accurately predicted in dried samples of these species grown under a range of agronomic conditions by partial least square regression of Fourier transform infrared spectra (R2 values for plots of predicted vs. measured values of 0.938 and 0.937, respectively). We also discuss the prediction of carbon and ash content in these samples and the application of infrared based predictive methods for the breeding improvement of energy grasses.
Resumo:
A rapid method for the analysis of biomass feedstocks was established to identify the quality of the pyrolysis products likely to impact on bio-oil production. A total of 15 Lolium and Festuca grasses known to exhibit a range of Klason lignin contents were analysed by pyroprobe-GC/MS (Py-GC/MS) to determine the composition of the thermal degradation products of lignin. The identification of key marker compounds which are the derivatives of the three major lignin subunits (G, H, and S) allowed pyroprobe-GC/MS to be statistically correlated to the Klason lignin content of the biomass using the partial least-square method to produce a calibration model. Data from this multivariate modelling procedure was then applied to identify likely "key marker" ions representative of the lignin subunits from the mass spectral data. The combined total abundance of the identified key markers for the lignin subunits exhibited a linear relationship with the Klason lignin content. In addition the effect of alkali metal concentration on optimum pyrolysis characteristics was also examined. Washing of the grass samples removed approximately 70% of the metals and changed the characteristics of the thermal degradation process and products. Overall the data indicate that both the organic and inorganic specification of the biofuel impacts on the pyrolysis process and that pyroprobe-GC/MS is a suitable analytical technique to asses lignin composition. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Relationships among quality factors in retailed free-range, corn-fed, organic, and conventional chicken breasts (9) were modeled using chemometric approaches. Use of principal component analysis (PCA) to neutral lipid composition data explained the majority (93%) of variability (variance) in fatty acid contents in 2 significant multivariate factors. PCA explained 88 and 75% variance in 3 factors for, respectively, flame ionization detection (FID) and nitrogen phosphorus (NPD) components in chromatographic flavor data from cooked chicken after simultaneous distillation extraction. Relationships to tissue antioxidant contents were modeled. Partial least square regression (PLS2), interrelating total data matrices, provided no useful models. By using single antioxidants as Y variables in PLS (1), good models (r2 values > 0.9) were obtained for alpha-tocopherol, glutathione, catalase, glutathione peroxidase, and reductase and FID flavor components and among the variables total mono and polyunsaturated fatty acids and subsets of FID, and saturated fatty acid and NPD components. Alpha-tocopherol had a modest (r2 = 0.63) relationship with neutral lipid n-3 fatty acid content. Such factors thus relate to flavor development and quality in chicken breast meat.
Resumo:
Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.
Resumo:
Purpose - The paper aims to examine the role of market orientation (MO) and innovation capability in determining business performance during an economic upturn and downturn. Design/methodology/approach - The data comprise two national-level surveys conducted in Finland in 2008, representing an economic boom, and in 2010 when the global economic crisis had hit the Finnish market. Partial least square path analysis is used to test the potential mediating effect of innovation capability on the relationship between MO and business performance during economic boom and bust. Findings - The results show that innovation capability fully mediates the performance effects of a MO during an economic upturn, whereas the mediation is only partial during a downturn. Innovation capability also mediates the relationship between a customer orientation and business performance during an upturn, whereas the mediating effect culminates in a competitor orientation during a downturn. Thus, the role of innovation capability as a mediator between the individual market-orientation components varies along the business cycle. Originality/value - This paper is one of the first studies that empirically examine the impact of the economic cycle on the relationship between strategic marketing concepts, such as MO or innovation capability, and the firm's business performance.
Resumo:
Objective In this study, we have used a chemometrics-based method to correlate key liposomal adjuvant attributes with in-vivo immune responses based on multivariate analysis. Methods The liposomal adjuvant composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB) was modified with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios, and the main liposomal characteristics (liposome size and zeta potential) was measured along with their immunological performance as an adjuvant for the novel, postexposure fusion tuberculosis vaccine, Ag85B-ESAT-6-Rv2660c (H56 vaccine). Partial least square regression analysis was applied to correlate and cluster liposomal adjuvants particle characteristics with in-vivo derived immunological performances (IgG, IgG1, IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, IFN-γ). Key findings While a range of factors varied in the formulations, decreasing the 1,2-distearoyl-sn-glycero-3-phosphocholine content (and subsequent zeta potential) together built the strongest variables in the model. Enhanced DDA and TDB content (and subsequent zeta potential) stimulated a response skewed towards a cell mediated immunity, with the model identifying correlations with IFN-γ, IL-2 and IL-6. Conclusion This study demonstrates the application of chemometrics-based correlations and clustering, which can inform liposomal adjuvant design.
Resumo:
The major activities in Year 3 on ‘Effect of hydrologic restoration on the habitat of the Cape Sable seaside sparrow (CSSS)’ included presentations, field work, data analysis, and report preparation. During this period, we made 4 presentations, two at the CSSS – fire planning workshops at Everglades National Park (ENP), one at the Society of Wetland Scientists’ meeting in Charleston, SC, and a fourth at the Marl Prairie/CSSS performance measure workshop at ENP. We started field work in the third week of January and continued till June 3, 2005. Early in the field season, we completed vegetation surveys along two transects, B and C (~15.1 km). During April and May, vegetation sampling was completed at 199 census sites, bringing to 608 the total number of CSSS census sites with quantitative vegetation data. We updated data sets from all three years, 2003-05, and analyzed them using cluster analysis and ordination as in previous two years. However, instead of weighted averaging, we used weighted-averaging partial least square regression (WA-PLS) model, as this method is considered an improvement over WA for inferring values of environmental variables from biological species composition. We also validated the predictive power of the WA-PLS regression model by applying it to a sub-set of 100 census sites for which hydroperiods were “known” from two sources, i.e., from elevations calculated from concurrent water depth measurements onsite and at nearby water level recorders, and from USGS digital elevation data. Additionally, we collected biomass samples at 88 census sites, and determined live and dead aboveground plant biomass. Using vegetation structure and biomass data from those sites, we developed a regression model that we used to predict aboveground biomass at all transects and census sites. Finally, biomass data was analyzed in relation to hydroperiod and fire frequency.
Resumo:
Abstract Honey is a high value food commodity with recognized nutraceutical properties. A primary driver of the value of honey is its floral origin. The feasibility of applying multivariate data analysis to various chemical parameters for the discrimination of honeys was explored. This approach was applied to four authentic honeys with different floral origins (rata, kamahi, clover and manuka) obtained from producers in New Zealand. Results from elemental profiling, stable isotope analysis, metabolomics (UPLC-QToF MS), and NIR, FT-IR, and Raman spectroscopic fingerprinting were analyzed. Orthogonal partial least square discriminant analysis (OPLS-DA) was used to determine which technique or combination of techniques provided the best classification and prediction abilities. Good prediction values were achieved using metabolite data (for all four honeys, Q2 = 0.52; for manuka and clover, Q2 = 0.76) and the trace element/isotopic data (for manuka and clover, Q2 = 0.65), while the other chemical parameters showed promise when combined (for manuka and clover, Q2 = 0.43).