376 resultados para parasitoid
Resumo:
Olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) is a major olive pest in the Mediterranean basin where increasing insecticide resistance has enhanced damage and necessitates more reliance on other control strategies, such as biological control. Provision of floral resources has been reported to improve the effectiveness of natural enemies. Here, we tested the effect of six plant nectars and two honeydew sources on the survival of Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae), a parasitoid wasp used in the biological control of olive fruit fly. Our results showed a positive effect on survival associated with nectars of Anchusa azurea Mill., Rosmarinus officinalis L., Lavatera cretica L. and Calamintha nepeta (L.) Savi, while honeydew proved to be a valuable alternative food source. When offering flowers directly to insects, Anchusa azurea, Lavatera cretica, and Foeniculum vulgare L. were found to be the most beneficial species, indicating also that P. concolor feeds predominantly on shallow corollas.
Resumo:
2016
Resumo:
Grapholita molesta (Lepidoptera: Tortricidae) is one of the main pests of peach trees in Brazil, causing fruit losses of 3-5%. Among possible biological control agents, Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) has been found in peach orchards. Our objectives were to study the rearing of T pretiosum in eggs of G. molesta and Anagasta kuehniella (Lepidoptera: Pyralidae), and select lineages of this parasitoid that have the potential to control G. molesta. Selection of best lineages was made from 5 populations of T pretiosum collected from organically-cultivated peach orchards. The study was done under controlled temperature (25 +/- 2 degrees C), relative humidity (70 +/- 10%) and 14:10 h (light:dark) photoperiod conditions. Grapholita molesta eggs were found to be adequate hosts for the development of T pretiosum, and the parameters for number of parasitized eggs, percent parasitized eggs, and sex ratio were similar to those for A. kuehniella eggs. The highest rate of parasitism of G. molesta eggs occurred in eggs with up to 48 h of embryonic development. Among the lineages of T pretiosum that were collected, HO8, PO8, PEL, and L3M showed the best biological performance and are therefore indicated for semi-field and field studies for biological control of oriental fruit moth.
Resumo:
This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential Pupal stage duration in C capitata was influenced differently for males and females In females, only soil type affected pupal stage duration, which was longer in a clay soil In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil As allude potential decreased, duration of the pupal stage of C capitata males increased, regardless of soil type C capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils The emergence of D longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil Always, the number of emerged adults was higher at higher moisture conditions C capitata and D longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.
Resumo:
Koinobiont parasitoids use several strategies to regulate the host`s physiological processes during parasitism. Although many aspects of host-parasitoid interactions have been explored, studies that attempted to assess the effects of parasitism on the availability of inorganic elements in the host are virtually nonexistent. Therefore, we aimed to evaluate the effects of parasitism on the concentrations of inorganic elements in the fat bodies of larvae of Diatraea saccharalis (Lepidoptera: Crambidae) during the development of the parasitoid Cotesia flavipes (Hymenoptera: Braconidae), by using total reflection X-ray fluorescence (TXRF). TXRF analysis allowed comparisons of the changes in the availability of the elements P. S. K, Ca, Cr, Fe, Ni, Cu, and Zn in the fat body tissues of D. saccharalis larvae parasitized by C. flavipes. Overall, the concentration of inorganic elements was higher early in parasitoid development (1 and 3 days after parasitism) compared to non-parasitized larvae, but much lower towards the end of parasitoid development (7 and 9 days after parasitism). Ca, K, and S were reduced after the fifth day of parasitism, which affected the total abundance of inorganic elements observed in the fat bodies of the parasitized hosts. The regulatory mechanisms or pathological effects related to the observed variation of the host inorganic elements induced by the parasitoid remain unknown, but there might be a strategy to make these elements available to the parasitoid larvae at the end of their development, when higher metabolic activity of the host fat body is required to sustain parasitoid growth. The observed variation of the host`s inorganic elements could also be related to the known effects of parasitism on the host`s immune response. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The koinobiont Cotesia flavipes responds to and is influenced by biochemical changes in the host hemolymph composition, Diatraea saccharalis. Changes in the composition of macronutrients may occur due to the hosts own development or by changes induced after parasitization. These changes occur to facilitate parasitoid invasion and to make the host internal environment suitable to parasitoid immature development. Therefore, changes in the availability of stored and circulating nutrients may correlate with the nutritional requirements of specific parasitoid immature stages. In here, we describe changes in the biochemical composition of parasitized and control larvae at different stages of parasitoid development to gain information on C flavipes host regulation and on its quantitative immature nutritional requirements. Total proteins, lipids and carbohydrates free in the hemolymph or stored in host fat bodies, and the SDS-PAGE protein profile of the hemolymph were evaluated in control and parasitized 6th instar during the whole parasitoid development. Changes in the total protein available in the host hemolymph were detected soon after parasitization, but carbohydrate and lipids were observed to differ only towards parasitoid larvae egression. Although C. flavipes affected the availability of all macronutrients observed in the host hemolymph, lipids and proteins stored in the host fat bodies were unaffected. However, carbohydrate concentration at the end of parasitoid larval development was much lower in parasitized than in control larvae at the same stage of development. SDS-PAGE analysis indicated C flavipes up-regulated two host proteins (125 and 48 kDa) and released two parasitism-specific proteins towards the end of parasitoid larval development. We provide a discussion on the role these changes may have on the process of host regulation and their possible requirement to sustain parasitoid development. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper provides the description of Phaenocarpa neosilbae sp. n. (Braconidae: Alysiinae) reared from larvae of Neosilba perezi (Romero Ruppel, 1973) (Diptera: Lonchaeidae) in Brazil. Diagnostic characters are figured and the key to the Neotropical species of Phaenocarpa (Arouca Penteado-Dias, 2006) is modified to include the new species.
Resumo:
The molecular mechanism of how insects recognize intruding microorganisms and parasites and distinguish them from own body structures is not well known. We explored evolutionary adaptations in an insect parasitoid host interaction to identify components that interfere with the recognition of foreign objects and cellular encapsulation. Because some parasitoids provide protection for the developing wasp in the absence of an overt suppression of the insect host defense, we analyzed the surface of eggs and symbiotic viruses for protective properties. Here we report on the molecular cloning of a 32-kDa protein (Crp32) that is one of the major protective components. It is produced in the calyx cells of the female wasp ovaries and attached to the surface of the egg and other particles including polydnaviruses. The recombinant protein confers protection to coated objects in a cellular encapsulation assay suggesting that a layer of Crp32 may prevent cellular encapsulation reactions by a local inactivation of the host defense system.
Resumo:
The degree and distribution of parasitisation in relation to densities of pink wax scale, Ceroplastes rubens Maskell, on umbrella trees, Schefflera actinophylla (Endl.), in south-eastern Queensland were investigated to determine whether scale outbreaks could be attributed, in part, to low levels of parasitisation. Rates of parasitisation were independent of or inversely dependent on host density, and highly variable, especially at low densities. The absence of density dependent parasitisation may occur as a result of: (i) non-aggregation by parasitoids; (ii) aggregation by parasitoids where parasitisation is limited by intrinsic or extrinsic factors; and/or (iii) high rates of hyperparasitisation.
Resumo:
Polydnaviruses are associated with certain parasitoid wasps and are introduced into the body cavity of the host caterpillar during oviposition. Some of the viral genes are expressed in host tissues and corresponding proteins are secreted into the hemocoel causing suppression of the host immune system. The Cotesia rubecula polydnavirus gene product, CrV1, effectively inactivates hemocytes by mediating cytoskeleton break-down. A precondition for the CrV1 function is the incorporation of the extracellular protein by hemocytes. Here, we show that a coiled-coil domain containing a putative leucine zipper is required for CrV1 function, since removal of this domain abolishes binding and uptake of the CrV1 protein by hemocytes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Endoparasitoid wasps produce maternal protein secretions, which are transported into the body of insect hosts at oviposition to regulate host physiology for successful development of their offspring. Venturia canescens calyx fluid contains so-called virus-like particles (VLPs) that are essential for immune evasion of the developing parasitoid inside the host. VLPs consist of four major proteins. In this paper, we describe the isolation and molecular cloning of a gene (vlp2) that is a constituent of VLPs and discuss its possible role in VLP structure and function.
Resumo:
Maternal protein secretions from endoparasitoid wasps are evolutionary adaptations to regulate host physiology as part of an extended wasp phenotype. Virus-like particles (VLPs) produced in the calyx region of Venturia canescens wasps are involved in immune evasion of the developing parasitoid inside the host. In contrast to polydnaviruses (PDVs), VcVLPs are devoid of any nucleic acids. To understand the role of these particles in the regulation of host physiology and phylogenetic relationship between VLPs and PDVs, it is essential to identify particle proteins. In this paper, we describe the isolation and molecular cloning of a neprilysin-like gene (VcNEP) coding for a 94 kDa VcVLP protein and discuss its possible role in host regulation.
Resumo:
Multipartite nucleic acid-containing virus-like particles, known as polydnaviruses, are special structures produced by female parasitoid wasps to deliver wasp components into the body of their host at oviposition. The particles confer protection for the developing parasitoid by passive and active means. Although several genes expressed from the circular DNA of these particles have been identified from various host-parasitoid systems, there is not much known about the structural proteins of these particles. Here we report on two genes encoding Cotesia rubecula particle proteins with similarities to molecular chaperones, calreticulin and heat-shock protein 70.
Resumo:
Polydnaviruses are essential for the survival of many Ichneumonoid endoparasitoids, providing active immune suppression of the host in which parasitoid larvae develop. The Cotesia rubecula bracovirus is unique among polydnaviruses in that only four major genes are detected in parasitized host ( Pieris rapae) tissues, and gene expression is transient. Here we describe a novel C. rubecula bracovirus gene (CrV3) encoding a lectin monomer composed of 159 amino acids, which has conserved residues consistent with invertebrate and mammalian C-type lectins. Bacterially expressed CrV3 agglutinated sheep red blood cells in a divalent ion-dependent but Ca2+-independent manner. Agglutination was inhibited by EDTA but not by biological concentrations of any saccharides tested. Two monomers of similar to14 and similar to17 kDa in size were identified on SDS-PAGE in parasitized P. rapae larvae. The 17-kDa monomer was found to be an N-glyscosylated form of the 14-kDa monomer. CrV3 is produced in infected hemocytes and fat body cells and subsequently secreted into hemolymph. We propose that CrV3 is a novel lectin, the first characterized from an invertebrate virus. CrV3 shows over 60% homology with hypothetical proteins isolated from polydnaviruses in two other Cotesia wasps, indicating that these proteins may also be C-type lectins and that a novel polydnavirus lectin family exists in Cotesia-associated bracoviruses. CrV3 is probably interacting with components in host hemolymph, resulting in suppression of the Pieris immune response. The high similarity of CrV3 with invertebrate lectins, as opposed to those from viruses, may indicate that some bracovirus functions were acquired from their hosts.
Resumo:
Insects are important vectors of diseases with remarkable immune defense capabilities. Hymenopteran endoparasitoids are adapted to overcome the host defense system and, therefore, are useful sources of immune-suppressing proteins. Not much is known about venom proteins in endoparasitoids, especially those that have a functional relationship with polydnaviruses (PDVs). Here, we describe the isolation and characterization of a small venom protein (Vn4.6) from an endoparositoid, Cotesia rubecula, which interferes with the activation of the host hemolymph prophenoloxidose. The coding region for Vn4.6 is located upstream in the opposite direction of a gene coding for a C rubecula PDV-protein (Crp32). Arch. Insect Biochem. Physiol. 53:92-100, 2003. (C) 2003 Wiley-Liss, Inc.