943 resultados para parasite-host cell interaction
Resumo:
The membranes from normal and Plasmodium knowlesi-infected rhemsus monkey erythrocytes (90 to 95 percent infected with early ring stage) were analyzed for transbilayer distribution of phosphatidylcholine (PC). hosphatidylethanolamine (PE). and hosphatidylserine (PS). by means of chemical and enzymatic probes. The external monolayer of the normal red cell membrane contained at least 68 to 72 percent of the total phosphatidylcholine and 15 to 20 percent of the total phosphati dylethanolamine. In the infected cell, the transmembrane phosphatidylcholine distribution appeared to be reversed, with only 20 to 30 percent of it being externally localized, whereas roughly equal amounts of phosphatidylethanolamine were present in the outer and'inner surfaces. However, total pho.~phatid)'lserine in both the infected and normal red cells was exc/usi~'ely internal. Unlike that in the normal intact cell, external phosphatidylethanolamine in the parasitized cell was readily accessible to phospholipase A2. These results indicate that significant changes in molecular architecture of the host cell membrane are the result of varasitization.
Resumo:
We assessed and compared host cell specificity of the haemolytic and cytotoxic activity of the RTX toxins from Actinobacillus equuli, an equine pathogen, and Actinobacillus suis, which is pathogenic for pigs. The two bacterial species are closely related, phenotypically as well as phylogenetically, sharing the same 16S rRNA gene sequence. Both species contain specific protein toxins from the family of pore-forming RTX toxins, however, the two species differ in their RTX toxin profiles. Haemolytic A. equuli contains the operon for the Aqx toxin, whereas A. suis harbours genes for ApxI and ApxII. We tested the toxic activity of the corresponding proteins on erythrocytes as well as on lymphocytes isolated from horse and pig blood. The strength of the haemolytic activity for each of the toxins was independent of the origin of erythrocytes. When testing cytotoxic activity, the Aqx protein showed a higher toxic effect for horse lymphocytes than for porcine lymphocytes. On the other hand, ApxI and ApxII showed a strong cytotoxic effect on porcine lymphocytes and a reduced toxicity for horse lymphocytes; the toxicity of ApxII was generally much lower than ApxI. Our results indicate a host species specificity of the toxic activity of RTX toxins Aqx of A. equuli and ApxI and ApxII of A. suis.
Resumo:
The apicomplexan parasites Theileria annulata and T. parva possess the ability to transform the infected host cell and induce uncontrolled proliferation. Residing free in the cytosol of its host leukocyte, the schizont is in a perfect position to manipulate host cell signaling pathways involved in regulating apoptosis, proliferation, and cell motility. While extensive Theileria-induced changes in host cell protein phosphorylation patterns have been reported, no Theileria-encoded kinases or phosphatases have been demonstrated - or are even predicted - to be associated with the schizont surface or secreted into the host cell. Instead, it seems that Theileria has evolved the capacity to modulate kinases of the host cell. In certain cases this involves “hijacking” pivotal kinases, such as the IκB kinase complex or the mitotic kinase polo-like kinase 1, recruiting them to the schizont surface. In this chapter the current understanding of Theileria-induced changes in host cell kinase activation is reviewed, and an attempt is made to link these events to phenotypic changes that occur in the cell in response to Theileria infection.
Resumo:
Recent publications demonstrated that a fragment of a Neospora caninum ROP2 family member antigen represents a promising vaccine candidate. We here report on the cloning of the cDNA encoding this protein, N. caninum ROP2 family member 1 (NcROP2Fam-1), its molecular characterization and localization. The protein possesses the hallmarks of ROP2 family members and is apparently devoid of catalytic activity. NcROP2Fam-1 is synthesized as a pre-pro-protein that is matured to 2 proteins of 49 and 55 kDa that localize to rhoptry bulbs. Upon invasion the protein is associated with the nascent parasitophorous vacuole membrane (PVM), evacuoles surrounding the host cell nucleus and, in some instances, the surface of intracellular parasites. Staining was also observed within the cyst wall of 'cysts' produced in vitro. Interestingly, NcROP2Fam-1 was also detected on the surface of extracellular parasites entering the host cells and antibodies directed against NcROP2Fam-1-specific peptides partially neutralized invasion in vitro. We conclude that, in spite of the general belief that ROP2 family proteins are intracellular antigens, NcROP2Fam-1 can also be considered as an extracellular antigen, a property that should be taken into account in further experiments employing ROP2 family proteins as vaccines.
Resumo:
It is known that the nanoparticle-cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle-protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability, and how this significantly influences the subsequent nanoparticle-cell interaction in vitro. Therefore, different surface charged superparamagnetic iron oxide nanoparticles were synthesized and characterized. Similar adsorbed protein profiles were identified following incubation in supplemented cell culture media, although cellular uptake varied significantly between the different particles. However, positively charged nanoparticles displayed a significantly lower colloidal stability than neutral and negatively charged particles while showing higher non-sedimentation driven cell-internalization in vitro without any significant cytotoxic effects. The results of this study strongly indicate therefore that an understanding of the aggregation state of NPs in biological fluids is crucial in regards to their biological interaction(s).
Resumo:
The possibility that bacteria may have evolved strategies to overcome host cell apoptosis was explored by using Rickettsia rickettsii, an obligate intracellular Gram-negative bacteria that is the etiologic agent of Rocky Mountain spotted fever. The vascular endothelial cell, the primary target cell during in vivo infection, exhibits no evidence of apoptosis during natural infection and is maintained for a sufficient time to allow replication and cell-to-cell spread prior to eventual death due to necrotic damage. Prior work in our laboratory demonstrated that R. rickettsii infection activates the transcription factor NF-κB and alters expression of several genes under its control. However, when R. rickettsii-induced activation of NF-κB was inhibited, apoptosis of infected but not uninfected endothelial cells rapidly ensued. In addition, human embryonic fibroblasts stably transfected with a superrepressor mutant inhibitory subunit IκB that rendered NF-κB inactivatable also underwent apoptosis when infected, whereas infected wild-type human embryonic fibroblasts survived. R. rickettsii, therefore, appeared to inhibit host cell apoptosis via a mechanism dependent on NF-κB activation. Apoptotic nuclear changes correlated with presence of intracellular organisms and thus this previously unrecognized proapoptotic signal, masked by concomitant NF-κB activation, likely required intracellular infection. Our studies demonstrate that a bacterial organism can exert an antiapoptotic effect, thus modulating the host cell’s apoptotic response to its own advantage by potentially allowing the host cell to remain as a site of infection.
Resumo:
Host Cell Factor-1 (HCF-1, C1) was first identified as a cellular target for the herpes simplex virus transcriptional activator VP16. Association between HCF and VP16 leads to the assembly of a multiprotein enhancer complex that stimulates viral immediate-early gene transcription. HCF-1 is expressed in all cells and is required for progression through G1 phase of the cell cycle. In addition to VP16, HCF-1 associates with a cellular bZIP protein known as LZIP (or Luman). Both LZIP and VP16 contain a four-amino acid HCF-binding motif, recognized by the N-terminal β-propeller domain of HCF-1. Herein, we show that the N-terminal 92 amino acids of LZIP contain a potent transcriptional activation domain composed of three elements: the HCF-binding motif and two LxxLL motifs. LxxLL motifs are found in a number of transcriptional coactivators and mediate protein–protein interactions, notably recognition of the nuclear hormone receptors. LZIP is an example of a sequence-specific DNA-binding protein that uses LxxLL motifs within its activation domain to stimulate transcription. The LxxLL motifs are not required for association with the HCF-1 β-propeller and instead interact with other regions in HCF-1 or recruit additional cofactors.
Resumo:
Specification of unequal daughter cell fates in the Drosophila external sense organ lineage requires asymmetric localization of the intrinsic determinant Numb as well as cell-cell interactions mediated by the Delta ligand and Notch receptor. Previous genetic studies indicated that numb acts upstream of Notch, and biochemical studies revealed that Numb can bind Notch. For a functional assay of the action of Numb on Notch signaling, we expressed these proteins in cultured Drosophila cells and used nuclear translocation of Suppressor of Hairless [Su(H)] as a reporter for Notch activity. We found that Numb interfered with the ability of Notch to cause nuclear translocation of Su(H); both the C-terminal half of the phosphotyrosine binding domain and the C terminus of Numb are required to inhibit Notch. Overexpression of Numb during wing development, which is sensitive to Notch dosage, revealed that Numb is also able to inhibit the Notch receptor in vivo. In the external sense organ lineage, the phosphotyrosine binding domain of Numb was found to be essential for the function but not for asymmetric localization of Numb. Our results suggest that Numb determines daughter cell fates in the external sense organ lineage by inhibiting Notch signaling.
Resumo:
The consequences of Helicobacter pylori attachment to human gastric cells were examined by transmission electron microscopy and immunofluorescence microscopy. H. pylori attachment resulted in (i) effacement of microvilli at the site of attachment, (ii) cytoskeletal rearrangement directly beneath the bacterium, and (iii) cup/pedestal formation at the site of attachment. Double-immunofluorescence studies revealed that the cytoskeletal components actin, alpha-actinin, and talin are involved in the process. Immunoblot analysis showed that binding of H. pylori to AGS cells induced tyrosine phosphorylation of two host cell proteins of 145 and 105 kDa. These results indicate that attachment of H. pylori to gastric epithelial cells resembles that of enteropathogenic Escherichia coli. Coccoid H. pylori, which are thought to be terminally differentiated bacterial forms, are capable of binding and inducing cellular changes of the same sort as spiral H. pylori, including tyrosine phosphorylation of host proteins.
Resumo:
Reactive lymph nodes (LNs) are sites where pMHC-loaded dendritic cells (DCs) interact with rare cognate T cells, leading to their clonal expansion. While DC interactions with T cell subsets critically shape the ensuing immune response, surprisingly little is known on their spatial orchestration at physiologically T cell low precursor frequencies. Light sheet fluorescence microscopy and one of its implementations, selective plane illumination microscopy (SPIM), is a powerful method to obtain precise spatial information of entire organs of 0.5-10mm diameter, the size range of murine LNs. Yet, its usefulness for immunological research has thus far not been comprehensively explored. Here, we have tested and defined protocols that preserve fluorescent protein function during lymphoid tissue clearing required for SPIM. Reconstructions of SPIM-generated 3D data sets revealed that calibrated numbers of adoptively transferred T cells and DCs are successfully detected at a single cell level within optically cleared murine LNs. Finally, we define parameters to quantify specific interactions between antigen-specific T cells and pMHC-bearing DCs in murine LNs. In sum, our studies describe the successful application of light sheet fluorescence microscopy to immunologically relevant tissues.
Resumo:
Apicomplexan parasites of the genera Theileria and Plasmodium have complicated life cycles including infection of a vertebrate intermediate host and an arthropod definitive host. As the Plasmodium parasite progresses through its life cycle, it enters a number of different cell types, both in its mammalian and mosquito hosts. The fate of these cells varies greatly, as do the parasite and host molecules involved in parasite-host interactions. In mammals, Plasmodium parasites infect hepatocytes and erythrocytes whereas Theileria infects ruminant leukocytes and erythrocytes. Survival of Plasmodium-infected hepatocytes and Theileria-infected leukocytes depends on parasite-mediated inhibition of host cell apoptosis but only Theileria-infected cells exhibit a fully transformed phenotype. As the development of both parasites progresses towards the merozoite stage, the parasites no longer promote the survival of the host cell and the infected cell is finally destroyed to release merozoites. In this review we describe similarities and differences of parasite-host cell interactions in Plasmodium-infected hepatocytes and Theileria-infected leukocytes and compare the observed phenotypes to other parasite stages interacting with host cells.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06