879 resultados para pacs: information retrieval techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação visa apresentar o mapeamento do uso das teorias de sistemas de informações, usando técnicas de recuperação de informação e metodologias de mineração de dados e textos. As teorias abordadas foram Economia de Custos de Transações (Transactions Costs Economics TCE), Visão Baseada em Recursos da Firma (Resource-Based View-RBV) e Teoria Institucional (Institutional Theory-IT), sendo escolhidas por serem teorias de grande relevância para estudos de alocação de investimentos e implementação em sistemas de informação, tendo como base de dados o conteúdo textual (em inglês) do resumo e da revisão teórica dos artigos dos periódicos Information System Research (ISR), Management Information Systems Quarterly (MISQ) e Journal of Management Information Systems (JMIS) no período de 2000 a 2008. Os resultados advindos da técnica de mineração textual aliada à mineração de dados foram comparadas com a ferramenta de busca avançada EBSCO e demonstraram uma eficiência maior na identificação de conteúdo. Os artigos fundamentados nas três teorias representaram 10% do total de artigos dos três períodicos e o período mais profícuo de publicação foi o de 2001 e 2007.(AU)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação visa apresentar o mapeamento do uso das teorias de sistemas de informações, usando técnicas de recuperação de informação e metodologias de mineração de dados e textos. As teorias abordadas foram Economia de Custos de Transações (Transactions Costs Economics TCE), Visão Baseada em Recursos da Firma (Resource-Based View-RBV) e Teoria Institucional (Institutional Theory-IT), sendo escolhidas por serem teorias de grande relevância para estudos de alocação de investimentos e implementação em sistemas de informação, tendo como base de dados o conteúdo textual (em inglês) do resumo e da revisão teórica dos artigos dos periódicos Information System Research (ISR), Management Information Systems Quarterly (MISQ) e Journal of Management Information Systems (JMIS) no período de 2000 a 2008. Os resultados advindos da técnica de mineração textual aliada à mineração de dados foram comparadas com a ferramenta de busca avançada EBSCO e demonstraram uma eficiência maior na identificação de conteúdo. Os artigos fundamentados nas três teorias representaram 10% do total de artigos dos três períodicos e o período mais profícuo de publicação foi o de 2001 e 2007.(AU)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação visa apresentar o mapeamento do uso das teorias de sistemas de informações, usando técnicas de recuperação de informação e metodologias de mineração de dados e textos. As teorias abordadas foram Economia de Custos de Transações (Transactions Costs Economics TCE), Visão Baseada em Recursos da Firma (Resource-Based View-RBV) e Teoria Institucional (Institutional Theory-IT), sendo escolhidas por serem teorias de grande relevância para estudos de alocação de investimentos e implementação em sistemas de informação, tendo como base de dados o conteúdo textual (em inglês) do resumo e da revisão teórica dos artigos dos periódicos Information System Research (ISR), Management Information Systems Quarterly (MISQ) e Journal of Management Information Systems (JMIS) no período de 2000 a 2008. Os resultados advindos da técnica de mineração textual aliada à mineração de dados foram comparadas com a ferramenta de busca avançada EBSCO e demonstraram uma eficiência maior na identificação de conteúdo. Os artigos fundamentados nas três teorias representaram 10% do total de artigos dos três períodicos e o período mais profícuo de publicação foi o de 2001 e 2007.(AU)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of Software Reuse providing techniques to support source code retrieval has been widely experimented. However, much effort is required in order to find how to match classical Information Retrieval and source code characteristics and implicit information. Introducing linguistic theories in the software development process, in terms of documentation standardization may produce significant benefits when applying Information Retrieval techniques. The goal of our research is to provide a tool to improve source code search and retrieval In order to achieve this goal we apply some linguistic rules to the development process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background As the use of electronic health records (EHRs) becomes more widespread, so does the need to search and provide effective information discovery within them. Querying by keyword has emerged as one of the most effective paradigms for searching. Most work in this area is based on traditional Information Retrieval (IR) techniques, where each document is compared individually against the query. We compare the effectiveness of two fundamentally different techniques for keyword search of EHRs. Methods We built two ranking systems. The traditional BM25 system exploits the EHRs' content without regard to association among entities within. The Clinical ObjectRank (CO) system exploits the entities' associations in EHRs using an authority-flow algorithm to discover the most relevant entities. BM25 and CO were deployed on an EHR dataset of the cardiovascular division of Miami Children's Hospital. Using sequences of keywords as queries, sensitivity and specificity were measured by two physicians for a set of 11 queries related to congenital cardiac disease. Results Our pilot evaluation showed that CO outperforms BM25 in terms of sensitivity (65% vs. 38%) by 71% on average, while maintaining the specificity (64% vs. 61%). The evaluation was done by two physicians. Conclusions Authority-flow techniques can greatly improve the detection of relevant information in EHRs and hence deserve further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conceptual Information Systems provide a multi-dimensional conceptually structured view on data stored in relational databases. On restricting the expressiveness of the retrieval language, they allow the visualization of sets of realted queries in conceptual hierarchies, hence supporting the search of something one does not have a precise description, but only a vague idea of. Information Retrieval is considered as the process of finding specific objects (documents etc.) out of a large set of objects which fit to some description. In some data analysis and knowledge discovery applications, the dual task is of interest: The analyst needs to determine, for a subset of objects, a description for this subset. In this paper we discuss how Conceptual Information Systems can be extended to support also the second task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large volume of visual content is inaccessible until effective and efficient indexing and retrieval of such data is achieved. In this paper, we introduce the DREAM system, which is a knowledge-assisted semantic-driven context-aware visual information retrieval system applied in the film post production domain. We mainly focus on the automatic labelling and topic map related aspects of the framework. The use of the context- related collateral knowledge, represented by a novel probabilistic based visual keyword co-occurrence matrix, had been proven effective via the experiments conducted during system evaluation. The automatically generated semantic labels were fed into the Topic Map Engine which can automatically construct ontological networks using Topic Maps technology, which dramatically enhances the indexing and retrieval performance of the system towards an even higher semantic level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Procedural knowledge is the knowledge required to perform certain tasks. It forms an important part of expertise, and is crucial for learning new tasks. This paper summarises existing work on procedural knowledge acquisition, and identifies two major challenges that remain to be solved in this field; namely, automating the acquisition process to tackle bottleneck in the formalization of procedural knowledge, and enabling machine understanding and manipulation of procedural knowledge. It is believed that recent advances in information extraction techniques can be applied compose a comprehensive solution to address these challenges. We identify specific tasks required to achieve the goal, and present detailed analyses of new research challenges and opportunities. It is expected that these analyses will interest researchers of various knowledge management tasks, particularly knowledge acquisition and capture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to bridge the “Semantic gap”, a number of relevance feedback (RF) mechanisms have been applied to content-based image retrieval (CBIR). However current RF techniques in most existing CBIR systems still lack satisfactory user interaction although some work has been done to improve the interaction as well as the search accuracy. In this paper, we propose a four-factor user interaction model and investigate its effects on CBIR by an empirical evaluation. Whilst the model was developed for our research purposes, we believe the model could be adapted to any content-based search system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the rapid growth of the number of digital media elements like image, video, audio, graphics on Internet, there is an increasing demand for effective search and retrieval techniques. Recently, many search engines have made image search as an option like Google, AlltheWeb, AltaVista, Freenet. In addition to this, Ditto, Picsearch, can search only the images on Internet. There are also other domain specific search engines available for graphics and clip art, audio, video, educational images, artwork, stock photos, science and nature [www.faganfinder.com/img]. These entire search engines are directory based. They crawls the entire Internet and index all the images in certain categories. They do not display the images in any particular order with respect to the time and context. With the availability of MPEG-7, a standard for describing multimedia content, it is now possible to store the images with its metadata in a structured format. This helps in searching and retrieving the images. The MPEG-7 standard uses XML to describe the content of multimedia information objects. These objects will have metadata information in the form of MPEG-7 or any other similar format associated with them. It can be used in different ways to search the objects. In this paper we propose a system, which can do content based image retrieval on the World Wide Web. It displays the result in user-defined order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the explosive growth of the volume and complexity of document data (e.g., news, blogs, web pages), it has become a necessity to semantically understand documents and deliver meaningful information to users. Areas dealing with these problems are crossing data mining, information retrieval, and machine learning. For example, document clustering and summarization are two fundamental techniques for understanding document data and have attracted much attention in recent years. Given a collection of documents, document clustering aims to partition them into different groups to provide efficient document browsing and navigation mechanisms. One unrevealed area in document clustering is that how to generate meaningful interpretation for the each document cluster resulted from the clustering process. Document summarization is another effective technique for document understanding, which generates a summary by selecting sentences that deliver the major or topic-relevant information in the original documents. How to improve the automatic summarization performance and apply it to newly emerging problems are two valuable research directions. To assist people to capture the semantics of documents effectively and efficiently, the dissertation focuses on developing effective data mining and machine learning algorithms and systems for (1) integrating document clustering and summarization to obtain meaningful document clusters with summarized interpretation, (2) improving document summarization performance and building document understanding systems to solve real-world applications, and (3) summarizing the differences and evolution of multiple document sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing amount of available semistructured data demands efficient mechanisms to store, process, and search an enormous corpus of data to encourage its global adoption. Current techniques to store semistructured documents either map them to relational databases, or use a combination of flat files and indexes. These two approaches result in a mismatch between the tree-structure of semistructured data and the access characteristics of the underlying storage devices. Furthermore, the inefficiency of XML parsing methods has slowed down the large-scale adoption of XML into actual system implementations. The recent development of lazy parsing techniques is a major step towards improving this situation, but lazy parsers still have significant drawbacks that undermine the massive adoption of XML. Once the processing (storage and parsing) issues for semistructured data have been addressed, another key challenge to leverage semistructured data is to perform effective information discovery on such data. Previous works have addressed this problem in a generic (i.e. domain independent) way, but this process can be improved if knowledge about the specific domain is taken into consideration. This dissertation had two general goals: The first goal was to devise novel techniques to efficiently store and process semistructured documents. This goal had two specific aims: We proposed a method for storing semistructured documents that maps the physical characteristics of the documents to the geometrical layout of hard drives. We developed a Double-Lazy Parser for semistructured documents which introduces lazy behavior in both the pre-parsing and progressive parsing phases of the standard Document Object Model's parsing mechanism. The second goal was to construct a user-friendly and efficient engine for performing Information Discovery over domain-specific semistructured documents. This goal also had two aims: We presented a framework that exploits the domain-specific knowledge to improve the quality of the information discovery process by incorporating domain ontologies. We also proposed meaningful evaluation metrics to compare the results of search systems over semistructured documents.