925 resultados para ovulation synchronization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies some extensions to the decentralized attitude synchronization of identical rigid bodies. Considering fully actuated Euler equations, the communication links between the rigid bodies are limited and the available information is restricted to relative orientations and angular velocities. In particular, no leader nor external reference dictates the swarm's behavior. The control laws are derived using two classical approaches of nonlinear control - tracking and energy shaping. This leads to a comparison of two corresponding methods which are currently considered for distributed synchronization - consensus and stabilization of mechanical systems with symmetries. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper considers the problem of autonomous synchronization of attitudes in a swarm of spacecraft. Building upon our recent results on consensus on manifolds, we model the spacecraft as particles on SO(3) and drive these particles to a common point in SO(3). Unlike the Euler angle or quaternion descriptions, this model suffers no singularities nor double-points. Our approach is fully cooperative and autonomous: we use no leader nor external reference. We present two types of control laws, in terms of applied control torques, that globally drive the swarm towards attitude synchronization: one that requires tree-like or all-to-all inter-satellite communication (most efficient) and one that works with nearly arbitrary communication (most robust).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the behavior of a network of N agents, each evolving on the circle. We propose a novel algorithm that achieves synchronization or balancing in phase models under mild connectedness assumptions on the (possibly time-varying and unidirectional) communication graphs. The global convergence analysis on the N-torus is a distinctive feature of the present work with respect to previous results that have focused on convergence in the Euclidean space. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal synchronization of multiple video recordings of the same dynamic event is a critical task in many computer vision applications e.g. novel view synthesis and 3D reconstruction. Typically this information is implied, since recordings are made using the same timebase, or time-stamp information is embedded in the video streams. Recordings using consumer grade equipment do not contain this information; hence, there is a need to temporally synchronize signals using the visual information itself. Previous work in this area has either assumed good quality data with relatively simple dynamic content or the availability of precise camera geometry. In this paper, we propose a technique which exploits feature trajectories across views in a novel way, and specifically targets the kind of complex content found in consumer generated sports recordings, without assuming precise knowledge of fundamental matrices or homographies. Our method automatically selects the moving feature points in the two unsynchronized videos whose 2D trajectories can be best related, thereby helping to infer the synchronization index. We evaluate performance using a number of real recordings and show that synchronization can be achieved to within 1 sec, which is better than previous approaches. Copyright 2013 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal synchronization of multiple video recordings of the same dynamic event is a critical task in many computer vision applications e.g. novel view synthesis and 3D reconstruction. Typically this information is implied through the time-stamp information embedded in the video streams. User-generated videos shot using consumer grade equipment do not contain this information; hence, there is a need to temporally synchronize signals using the visual information itself. Previous work in this area has either assumed good quality data with relatively simple dynamic content or the availability of precise camera geometry. Our first contribution is a synchronization technique which tries to establish correspondence between feature trajectories across views in a novel way, and specifically targets the kind of complex content found in consumer generated sports recordings, without assuming precise knowledge of fundamental matrices or homographies. We evaluate performance using a number of real video recordings and show that our method is able to synchronize to within 1 sec, which is significantly better than previous approaches. Our second contribution is a robust and unsupervised view-invariant activity recognition descriptor that exploits recurrence plot theory on spatial tiles. The descriptor is individually shown to better characterize the activities from different views under occlusions than state-of-the-art approaches. We combine this descriptor with our proposed synchronization method and show that it can further refine the synchronization index. © 2013 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been much recent interest in engineering the phenomenon of synchronization in coupled micro-/nano-scale oscillators for applications ranging from precision time and frequency references to new approaches to information processing. This paper presents descriptive modelling detail and further experimental validation of the phenomenon of mutual synchronization in coupled MEMS oscillators building upon recent experimental validation of this concept by the present authors. In particular, the underlying dependence of the observation of synchronization on system parameters is studied through numerical and analytical modelling while considering essential nonlinearities in both the resonator and circuit domain. Experimental results demonstrating synchronized response are elaborated based on the realization of electrically coupled MEMS resonator based square-wave oscillators. The experimental results on frequency entrainment are found to be in general agreement with results obtained through analytical modeling and numerical simulation. The concept presented here is scalable and could be used to investigate the dynamics of large-arrays of coupled MEMS oscillators. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the general problem of synchronizing the data on two devices using a minimum amount of communication, a core infrastructural requirement for a large variety of distributed systems. Our approach considers the interactive synchronization of prioritized data, where, for example, certain information is more time-sensitive than other information. We propose and analyze a new scheme for efficient priority-based synchronization, which promises benefits over conventional synchronization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perceptual grouping is well-known to be a fundamental process during visual perception, notably grouping across scenic regions that do not receive contrastive visual inputs. Illusory contours are a classical example of such groupings. Recent psychophysical and neurophysiological evidence have shown that the grouping process can facilitate rapid synchronization of the cells that are bound together by a grouping, even when the grouping must be completed across regions that receive no contrastive inputs. Synchronous grouping can hereby bind together different object parts that may have become desynchronized due to a variety of factors, and can enhance the efficiency of cortical transmission. Neural models of perceptual grouping have clarified how such fast synchronization may occur by using bipole grouping cells, whose predicted properties have been supported by psychophysical, anatomical, and neurophysiological experiments. These models have not, however, incorporated some of the realistic constraints on which groupings in the brain are conditioned, notably the measured spatial extent of long-range interactions in layer 2/3 of a grouping network, and realistic synaptic and axonal signaling delays within and across cells in different cortical layers. This work addresses the question: Can long-range interactions that obey the bipole constraint achieve fast synchronization under realistic anatomical and neurophysiological constraints that initially desynchronize grouping signals? Can the cells that synchronize retain their analog sensitivity to changing input amplitudes? Can the grouping process complete and synchronize illusory contours across gaps in bottom-up inputs? Our simulations show that the answer to these questions is Yes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For pt. I see ibid., vol. 44, p. 927-36 (1997). In a digital communications system, data are transmitted from one location to another by mapping bit sequences to symbols, and symbols to sample functions of analog waveforms. The analog waveform passes through a bandlimited (possibly time-varying) analog channel, where the signal is distorted and noise is added. In a conventional system the analog sample functions sent through the channel are weighted sums of one or more sinusoids; in a chaotic communications system the sample functions are segments of chaotic waveforms. At the receiver, the symbol may be recovered by means of coherent detection, where all possible sample functions are known, or by noncoherent detection, where one or more characteristics of the sample functions are estimated. In a coherent receiver, synchronization is the most commonly used technique for recovering the sample functions from the received waveform. These sample functions are then used as reference signals for a correlator. Synchronization-based coherent receivers have advantages over noncoherent receivers in terms of noise performance, bandwidth efficiency (in narrow-band systems) and/or data rate (in chaotic systems). These advantages are lost if synchronization cannot be maintained, for example, under poor propagation conditions. In these circumstances, communication without synchronization may be preferable. The theory of conventional telecommunications is extended to chaotic communications, chaotic modulation techniques and receiver configurations are surveyed, and chaotic synchronization schemes are described

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present theoretical, numerical, and experimental analyses on the non-linear dynamic behavior of superparamagnetic beads exposed to a periodic array of micro-magnets and an external rotating field. The agreement between theoretical and experimental results revealed that non-linear magnetic forcing dynamics are responsible for transitions between phase-locked orbits, sub-harmonic orbits, and closed orbits, representing different mobility regimes of colloidal beads. These results suggest that the non-linear behavior can be exploited to construct a novel colloidal separation device that can achieve effectively infinite separation resolution for different types of beads, by exploiting minor differences in their bead's properties. We also identify a unique set of initial conditions, which we denote the "devil's gate" which can be used to expeditiously identify the full range of mobility for a given bead type.