891 resultados para optimal linear control design
Resumo:
The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in the direction of an embedded single-chip FPGA-based controller of AMBs.
Resumo:
The recent years have seen the appearance of innovative system for acoustic and vibration attenuation, most of them integrating new actuator technologies. In this sense, the study of algorithms for active vibrations control in rotating machinery became an area of enormous interest, mainly due to countless demands of an optimal performance of mechanical systems in aircraft, aerospace and automotive structures. In this way, this paper presents an approach that is numerically verified for active vibration control in a rotor using Active Magnetic Bearings (AMB). The control design in a discrete state-space formulation is carried out through feedback technique and Linear Matrix Inequalities (LMI) approach. LMI is useful for system with uncertainties. The AMB uses electromagnetic forces to support a rotor without mechanical contact. By monitoring the position of the shaft and changing the dynamics of the system accordingly, the AMB keeps the rotor in a desired position. This unique feature has broadened for the applications of AMB and now they can be considered not only as a main support bearing in a machine but also as dampers for vibration control and force actuators. © 2009 Society for Experimental Mechanics Inc.
Resumo:
"July 15, 1971."
Resumo:
Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.
Centralized Motion Control of a Linear Tooth Belt Drive: Analysis of the Performance and Limitations
Resumo:
A centralized robust position control for an electrical driven tooth belt drive is designed in this doctoral thesis. Both a cascaded control structure and a PID based position controller are discussed. The performance and the limitations of the system are analyzed and design principles for the mechanical structure and the control design are given. These design principles are also suitable for most of the motion control applications, where mechanical resonance frequencies and control loop delays are present. One of the major challenges in the design of a controller for machinery applications is that the values of the parameters in the system model (parameter uncertainty) or the system model it self (non-parametric uncertainty) are seldom known accurately in advance. In this thesis a systematic analysis of the parameter uncertainty of the linear tooth beltdrive model is presented and the effect of the variation of a single parameter on the performance of the total system is shown. The total variation of the model parameters is taken into account in the control design phase using a Quantitative Feedback Theory (QFT). The thesis also introduces a new method to analyze reference feedforward controllers applying the QFT. The performance of the designed controllers is verified by experimentalmeasurements. The measurements confirm the control design principles that are given in this thesis.
Resumo:
Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.
Resumo:
Using a geometric approach, a composite control—the sum of a slow control and a fast control—is derived for a general class of non-linear singularly perturbed systems. A new and simpler method of composite control design is proposed whereby the fast control is completely designed at the outset. The slow control is then free to be chosen such that the slow integral manifold of the original system approximates a desired design manifold to within any specified order of ε accuracy.
Resumo:
Using a geometric approach, a composite control—the sum of a slow control and a fast control—is derived for a general class of non-linear singularly perturbed systems. A new and simpler method of composite control design is proposed whereby the fast control is completely designed at the outset. The slow control is then free to be chosen such that the slow integral manifold of the original system approximates a desired design manifold to within any specified order of ε accuracy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper deals with a stochastic optimal control problem involving discrete-time jump Markov linear systems. The jumps or changes between the system operation modes evolve according to an underlying Markov chain. In the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (TN), or the occurrence of a crucial failure event (τΔ), after which the system is brought to a halt for maintenance. In addition, an intermediary mixed case for which T represents the minimum between TN and τΔ is also considered. These stopping times coincide with some of the jump times of the Markov state and the information available allows the reconfiguration of the control action at each jump time, in the form of a linear feedback gain. The solution for the linear quadratic problem with complete Markov state observation is presented. The solution is given in terms of recursions of a set of algebraic Riccati equations (ARE) or a coupled set of algebraic Riccati equation (CARE).
Resumo:
An important stage in the solution of active vibration control in flexible structures is the optimal placement of sensors and actuators. In many works, the positioning of these devices in systems governed for parameter distributed is, mainly, based, in controllability approach or criteria of performance. The positions that enhance such parameters are considered optimal. These techniques do not take in account the space variation of disturbances. An way to enhance the robustness of the control design would be to locate the actuators considering the space distribution of the worst case of disturbances. This paper is addressed to include in the formulation of problem of optimal location of sensors and piezoelectric actuators the effect of external disturbances. The paper concludes with a numerical simulation in a truss structure considering that the disturbance is applied in a known point a priori. As objective function the C norm system is used. The LQR (Linear Quadratic Regulator) controller was used to quantify performance of different sensors/actuators configurations.
Resumo:
This paper presents necessary and sufficient conditions for the following problem: given a linear time invariant plant G(s) = N(s)D(s)-1 = C(sI - A]-1B, with m inputs, p outputs, p > m, rank(C) = p, rank(B) = rank(CB) = m, £nd a tandem dynamic controller Gc(s) = D c(s)-1Nc(s) = Cc(sI - A c)-1Bc + Dc, with p inputs and m outputs and a constant output feedback matrix Ko ε ℝm×p such that the feedback system is Strictly Positive Real (SPR). It is shown that this problem has solution if and only if all transmission zeros of the plant have negative real parts. When there exists solution, the proposed method firstly obtains Gc(s) in order to all transmission zeros of Gc(s)G(s) present negative real parts and then Ko is found as the solution of some Linear Matrix Inequalities (LMIs). Then, taking into account this result, a new LMI based design for output Variable Structure Control (VSC) of uncertain dynamic plants is presented. The method can consider the following design specifications: matched disturbances or nonlinearities of the plant, output constraints, decay rate and matched and nonmatched plant uncertainties. © 2006 IEEE.
Resumo:
This paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.