895 resultados para optimal control design
Resumo:
The optimal control of problems that are constrained by partial differential equations with uncertainties and with uncertain controls is addressed. The Lagrangian that defines the problem is postulated in terms of stochastic functions, with the control function possibly decomposed into an unknown deterministic component and a known zero-mean stochastic component. The extra freedom provided by the stochastic dimension in defining cost functionals is explored, demonstrating the scope for controlling statistical aspects of the system response. One-shot stochastic finite element methods are used to find approximate solutions to control problems. It is shown that applying the stochastic collocation finite element method to the formulated problem leads to a coupling between stochastic collocation points when a deterministic optimal control is considered or when moments are included in the cost functional, thereby forgoing the primary advantage of the collocation method over the stochastic Galerkin method for the considered problem. The application of the presented methods is demonstrated through a number of numerical examples. The presented framework is sufficiently general to also consider a class of inverse problems, and numerical examples of this type are also presented. © 2011 Elsevier B.V.
Resumo:
We solve the problem of steering a three-level quantum system from one eigen-state to another in minimum time and study its possible extension to the time-optimal control problem for a general n-level quantum system. For the three-level system we find all optimal controls by finding two types of symmetry in the problem: ℤ2 × S3 discrete symmetry and S1 continuous symmetry, and exploiting them to solve the problem through discrete reduction and symplectic reduction. We then study the geometry, in the same framework, which occurs in the time-optimal control of a general n-level quantum system. © 2007 IEEE.
Resumo:
We solve the problem of steering a three-level quantum system from one eigen-state to another in minimum time and study its possible extension to the time-optimal control problem for a general n-level quantum system. For the three-level system we find all optimal controls by finding two types of symmetry in the problems: ℤ × S3 discrete symmetry and 51 continuous symmetry, and exploiting them to solve the problem through discrete reduction and symplectic reduction. We then study the geometry, in the same framework, which occurs in the time-optimal control of a general n-level quantum system. Copyright ©2007 Watam Press.
Resumo:
We consider the question "How should one act when the only goal is to learn as much as possible?" Building on the theoretical results of Fedorov [1972] and MacKay [1992], we apply techniques from Optimal Experiment Design (OED) to guide the query/action selection of a neural network learner. We demonstrate that these techniques allow the learner to minimize its generalization error by exploring its domain efficiently and completely. We conclude that, while not a panacea, OED-based query/action has much to offer, especially in domains where its high computational costs can be tolerated.
Resumo:
This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.
Resumo:
By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both noninteracting and interacting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.
Resumo:
A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration. © 2009 Elsevier Ltd.
Resumo:
We analyze the production of defects during the dynamical crossing of a mean-field phase transition with a real order parameter. When the parameter that brings the system across the critical point changes in time according to a power-law schedule, we recover the predictions dictated by the well-known Kibble-Zurek theory. For a fixed duration of the evolution, we show that the average number of defects can be drastically reduced for a very large but finite system, by optimizing the time dependence of the driving using optimal control techniques. Furthermore, the optimized protocol is robust against small fluctuations.
Resumo:
In this paper, a multiloop robust control strategy is proposed based on H∞ control and a partial least squares (PLS) model (H∞_PLS) for multivariable chemical processes. It is developed especially for multivariable systems in ill-conditioned plants and non-square systems. The advantage of PLS is to extract the strongest relationship between the input and the output variables in the reduced space of the latent variable model rather than in the original space of the highly dimensional variables. Without conventional decouplers, the dynamic PLS framework automatically decomposes the MIMO process into multiple single-loop systems in the PLS subspace so that the controller design can be simplified. Since plant/model mismatch is almost inevitable in practical applications, to enhance the robustness of this control system, the controllers based on the H∞ mixed sensitivity problem are designed in the PLS latent subspace. The feasibility and the effectiveness of the proposed approach are illustrated by the simulation results of a distillation column and a mixing tank process. Comparisons between H∞_PLS control and conventional individual control (either H∞ control or PLS control only) are also made
Resumo:
Consideramos o problema de controlo óptimo de tempo mínimo para sistemas de controlo mono-entrada e controlo afim num espaço de dimensão finita com condições inicial e final fixas, onde o controlo escalar toma valores num intervalo fechado. Quando aplicamos o método de tiro a este problema, vários obstáculos podem surgir uma vez que a função de tiro não é diferenciável quando o controlo é bang-bang. No caso bang-bang os tempos conjugados são teoricamente bem definidos para este tipo de sistemas de controlo, contudo os algoritmos computacionais directos disponíveis são de difícil aplicação. Por outro lado, no caso suave o conceito teórico e prático de tempos conjugados é bem conhecido, e ferramentas computacionais eficazes estão disponíveis. Propomos um procedimento de regularização para o qual as soluções do problema de tempo mínimo correspondente dependem de um parâmetro real positivo suficientemente pequeno e são definidas por funções suaves em relação à variável tempo, facilitando a aplicação do método de tiro simples. Provamos, sob hipóteses convenientes, a convergência forte das soluções do problema regularizado para a solução do problema inicial, quando o parâmetro real tende para zero. A determinação de tempos conjugados das trajectórias localmente óptimas do problema regularizado enquadra-se na teoria suave conhecida. Provamos, sob hipóteses adequadas, a convergência do primeiro tempo conjugado do problema regularizado para o primeiro tempo conjugado do problema inicial bang-bang, quando o parâmetro real tende para zero. Consequentemente, obtemos um algoritmo eficiente para a computação de tempos conjugados no caso bang-bang.