969 resultados para optimal allocation
Resumo:
The problem of finding optimal parameterized feedback policies for dynamic bandwidth allocation in communication networks is studied. We consider a queueing model with two queues to which traffic from different competing flows arrive. The queue length at the buffers is observed every T instants of time, on the basis of which a decision on the amount of bandwidth to be allocated to each buffer for the next T instants is made. We consider two different classes of multilevel closed-loop feedback policies for the system and use a two-timescale simultaneous perturbation stochastic approximation (SPSA) algorithm to find optimal policies within each prescribed class. We study the performance of the proposed algorithm on a numerical setting and show performance comparisons of the two optimal multilevel closedloop policies with optimal open loop policies. We observe that closed loop policies of Class B that tune parameters for both the queues and do not have the constraint that the entire bandwidth be used at each instant exhibit the best results overall as they offer greater flexibility in parameter tuning. Index Terms — Resource allocation, dynamic bandwidth allocation in communication networks, two-timescale SPSA algorithm, optimal parameterized policies. I.
Resumo:
In this paper we review the most peculiar and interesting information-theoretic and communications features of fading channels. We first describe the statistical models of fading channels which are frequently used in the analysis and design of communication systems. Next, we focus on the information theory of fading channels, by emphasizing capacity as the most important performance measure. Both single-user and multiuser transmission are examined. Further, we describe how the structure of fading channels impacts code design, and finally overview equalization of fading multipath channels.
Resumo:
Single receive antenna selection (AS) is a popular method for obtaining diversity benefits without the additional costs of multiple radio receiver chains. Since only one antenna receives at any time, the transmitter sends a pilot multiple times to enable the receiver to estimate the channel gains of its N antennas to the transmitter and select an antenna. In time-varying channels, the channel estimates of different antennas are outdated to different extents. We analyze the symbol error probability (SEP) in time-varying channels of the N-pilot and (N+1)-pilot AS training schemes. In the former, the transmitter sends one pilot for each receive antenna. In the latter, the transmitter sends one additional pilot that helps sample the channel fading process of the selected antenna twice. We present several new results about the SEP, optimal energy allocation across pilots and data, and optimal selection rule in time-varying channels for the two schemes. We show that due to the unique nature of AS, the (N+1)-pilot scheme, despite its longer training duration, is much more energy-efficient than the conventional N-pilot scheme. An extension to a practical scenario where all data symbols of a packet are received by the same antenna is also investigated.
Resumo:
We address the problem of passive eavesdroppers in multi-hop wireless networks using the technique of friendly jamming. The network is assumed to employ Decode and Forward (DF) relaying. Assuming the availability of perfect channel state information (CSI) of legitimate nodes and eavesdroppers, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met while minimizing the overall transmitted power. We propose activation sets (AS-es) for scheduling, and formulate an optimization problem for PA. Several methods for finding AS-es are discussed and compared. We present an approximate linear program for the original nonlinear, non-convex PA optimization problem, and argue that under certain conditions, both the formulations produce identical results. In the absence of eavesdroppers' CSI, we utilize the notion of Vulnerability Region (VR), and formulate an optimization problem with the objective of minimizing the VR. Our results show that the proposed solution can achieve power-efficient operation while defeating eavesdroppers and achieving desired source-destination throughputs simultaneously. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We consider optimal average power allocation policies in a wireless channel in the presence of individual delay constraints on the transmitted packets. Power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. We have developed a computationally efficient online algorithm, when there is same hard delay constraint for all packets. Later on, we generalize it to the case when there are multiple real time streams with different hard deadline constraints. Our algorithm uses linear programming and has very low complexity.
Resumo:
We consider the problem of secure transmission in two-hop amplify-and-forward untrusted relay networks. We analyze the ergodic secrecy capacity (ESC) and present compact expressions for the ESC in the high signal-to-noise ratio regime. We also examine the impact of large scale antenna arrays at either the source or the destination. For large antenna arrays at the source, we confirm that the ESC is solely determined by the channel between the relay and the destination. For very large antenna arrays at the destination, we confirm that the ESC is solely determined by the channel between the source and the relay.
Resumo:
We consider the uplink of massive multicell multiple-input multiple-output systems, where the base stations (BSs), equipped with massive arrays, serve simultaneously several terminals in the same frequency band. We assume that the BS estimates the channel from uplink training, and then uses the maximum ratio combining technique to detect the signals transmitted from all terminals in its own cell. We propose an optimal resource allocation scheme which jointly selects the training duration, training signal power, and data signal power in order to maximize the sum spectral efficiency, for a given total energy budget spent in a coherence interval. Numerical results verify the benefits of the optimal resource allocation scheme. Furthermore, we show that more training signal power should be used at low signal-to-noise ratio (SNRs), and vice versa at high SNRs. Interestingly, for the entire SNR regime, the optimal training duration is equal to the number of terminals.
Resumo:
Congestion management of transmission power systems has achieve high relevance in competitive environments, which require an adequate approach both in technical and economic terms. This paper proposes a new methodology for congestion management and transmission tariff determination in deregulated electricity markets. The congestion management methodology is based on a reformulated optimal power flow, whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the transactions resulting from market operation. The proposed transmission tariffs consider the physical impact caused by each market agents in the transmission network. The final tariff considers existing system costs and also costs due to the initial congestion situation and losses. This paper includes a case study for the 118 bus IEEE test case.
Resumo:
This work proposes a methodology for optimized allocation of switches for automatic load transfer in distribution systems in order to improve the reliability indexes by restoring such systems which present voltage classes of 23 to 35 kV and radial topology. The automatic switches must be allocated on the system in order to transfer load remotely among the sources at the substations. The problem of switch allocation is formulated as nonlinear constrained mixed integer programming model subject to a set of economical and physical constraints. A dedicated Tabu Search (TS) algorithm is proposed to solve this model. The proposed methodology is tested for a large real-life distribution system. © 2011 IEEE.
Resumo:
We consider a cooperative relaying network in which a source communicates with a group of users in the presence of one eavesdropper. We assume that there are no source-user links and the group of users receive only retransmitted signal from the relay. Whereas, the eavesdropper receives both the original and retransmitted signals. Under these assumptions, we exploit the user selection technique to enhance the secure performance. We first find the optimal power allocation strategy when the source has the full channel state information (CSI) of all links. We then evaluate the security level through: i) ergodic secrecy rate and ii) secrecy outage probability when having only the statistical knowledge of CSIs.
Resumo:
Abstract not available
Resumo:
A decision-maker, when faced with a limited and fixed budget to collect data in support of a multiple attribute selection decision, must decide how many samples to observe from each alternative and attribute. This allocation decision is of particular importance when the information gained leads to uncertain estimates of the attribute values as with sample data collected from observations such as measurements, experimental evaluations, or simulation runs. For example, when the U.S. Department of Homeland Security must decide upon a radiation detection system to acquire, a number of performance attributes are of interest and must be measured in order to characterize each of the considered systems. We identified and evaluated several approaches to incorporate the uncertainty in the attribute value estimates into a normative model for a multiple attribute selection decision. Assuming an additive multiple attribute value model, we demonstrated the idea of propagating the attribute value uncertainty and describing the decision values for each alternative as probability distributions. These distributions were used to select an alternative. With the goal of maximizing the probability of correct selection we developed and evaluated, under several different sets of assumptions, procedures to allocate the fixed experimental budget across the multiple attributes and alternatives. Through a series of simulation studies, we compared the performance of these allocation procedures to the simple, but common, allocation procedure that distributed the sample budget equally across the alternatives and attributes. We found the allocation procedures that were developed based on the inclusion of decision-maker knowledge, such as knowledge of the decision model, outperformed those that neglected such information. Beginning with general knowledge of the attribute values provided by Bayesian prior distributions, and updating this knowledge with each observed sample, the sequential allocation procedure performed particularly well. These observations demonstrate that managing projects focused on a selection decision so that the decision modeling and the experimental planning are done jointly, rather than in isolation, can improve the overall selection results.