919 resultados para optical solitons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths, and different pulse evolutions are observed depending on the net cavity dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear systems with periodic variations of nonlinearity and/or dispersion occur in a variety of physical problems and engineering applications. The mathematical concept of dispersion managed solitons already has made an impact on the development of fibre communications, optical signal processing and laser science. We overview here the field of the dispersion managed solitons starting from mathematical theories of Hamiltonian and dissipative systems and then discuss recent advances in practical implementation of this concept in fibre-optics and lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study soliton solutions of the path-averaged propagation equation governing the transmission of dispersion-managed (DM) optical pulses in the (practical) limit when residual dispersion and nonlinearity only slightly affect the pulse dynamics over one compensation period. In the case of small dispersion map strengths, the averaged pulse dynamics is governed by a perturbed form of the nonlinear Schrödinger equation; applying a perturbation theory – elsewhere developed – based on inverse scattering theory, we derive an analytic expression for the envelope of the DM soliton. This expression correctly predicts the power enhancement arising from the dispersion management. Theoretical results are verified by direct numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths, and different pulse evolutions are observed depending on the net cavity dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communications engineers are learning to create an electromagnet wave at will, to transmit information. This wave, the optical soliton, is the subject of astounding recent developments in nonlinear optics and lasers. The author describes the principles behind the use of solitons in optical communications and shows that in the context of such communications the most important property of solitons is that they are extremely stable. Not only do they not disperse, but an encounter with a perturbation (e.g. a joint in optical fibre) will usually leave the soliton unaltered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The issues involved in employing nonlinear optical loop mirrors (NOLMs) as intensity filters in picosecond soliton transmission were examined in detail. It was shown that inserting NOLMs into a periodically amplified transmission line allowed picosecond solitons to be transmitted under conditions considered infeasible until now. The loop mirrors gave dual function, removing low-power background dispersive waves through saturable absorption and applying a negative feedback mechanism to control the amplitude of the solitons. The stochastic characteristics of the pulses that were due to amplifier spontaneous-emission noise were investigated, and a number of new properties were determined. In addition, the mutual interaction between pulses was also significantly different from that observed for longer-duration solitons. The impact of Raman scattering in the computations was included and it was shown that soliton self-frequency shifts may be eliminated by appropriate bandwidth restrictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study soliton solutions of the path-averaged propagation equation governing the transmission of dispersion-managed (DM) optical pulses in the (practical) limit when residual dispersion and nonlinearity only slightly affect the pulse dynamics over one compensation period. In the case of small dispersion map strengths, the averaged pulse dynamics is governed by a perturbed form of the nonlinear Schrödinger equation; applying a perturbation theory – elsewhere developed – based on inverse scattering theory, we derive an analytic expression for the envelope of the DM soliton. This expression correctly predicts the power enhancement arising from the dispersion management. Theoretical results are verified by direct numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear systems with periodic variations of nonlinearity and/or dispersion occur in a variety of physical problems and engineering applications. The mathematical concept of dispersion managed solitons already has made an impact on the development of fibre communications, optical signal processing and laser science. We overview here the field of the dispersion managed solitons starting from mathematical theories of Hamiltonian and dissipative systems and then discuss recent advances in practical implementation of this concept in fibre-optics and lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The WDM properties of dispersion managed (DM) solitons and the reduction in Gordon-Haus jitter means that it is possible to contemplate multiple channels each at 10 Gbit/s for transoceanic distances without the need for elaborate soliton control. This paper will concentrate on fundamental principles of DM solitons, but will use these principles to indicate optimum maps for future high-speed soliton systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown, through numerical simulations, that by using a combination of dispersion management and periodic saturable absorption it is possible to transmit solitonlike pulses with greatly increased energy near to the zero net dispersion wavelength. This system is shown to support the stable propagation of solitons over transoceanic distances for a wide range of input powers.