989 resultados para optical coherent detection


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that inserting pilot tones with frequency intervals inversely proportional to the subcarrier index exhibits greatly improved dispersion estimation performance when compared to the equal spacing design in optical fast orthogonal frequency division multiplexing (F-OFDM). With the proposed design, a 20-Gbit/s four amplitude shift keying optical F-OFDM system with 840-km transmission without optical dispersion compensation is experimentally demonstrated. It is shown that a single F-OFDM symbol with six pilot tones can achieve near-optimal estimation performance for the 840-km dispersion. This is in contrast to the minimum of ten pilot tones using an equal spacing design with either cubic or Fourier-transform-based interpolation. © 2013 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss practical designs of coherent optical fast OFDM, and compare the performance of this scheme to conventional OFDM to identify its suitable application scenarios. © OSA 2013

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C), leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four-wave-mixing (FWM) due to the fiber nonlinearity is a major limiting factor in coherent optical OFDM transmission. We propose to apply power pre-emphasis, i.e. to allocate the transmitted power nonuniformly among subcarriers in order to suppress the FWM impairment. The proposed technique was numerically investigated for both single channel 15.6 Gbs CO-OFDM transmissions and 7-channel WDM transmissions, showing that up to 1 dB improvement in the system's Qfactor can be achieved without considering sophisticated power loading algorithms developed for wireless communications. © 2014 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze theoretically the interplay between optical return-to-zero signal degradation due to timing jitter and additive amplified-spontaneous-emission noise. The impact of these two factors on the performance of a square-law direct detection receiver is also investigated. We derive an analytical expression for the bit-error probability and quantitatively determine the conditions when the contributions of the effects of timing jitter and additive noise to the bit error rate can be treated separately. The analysis of patterning effects is also presented. © 2007 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this letter, a novel phase noise estimation scheme has been proposed for coherent optical orthogonal frequency division multiplexing systems, the quasi-pilot-aided method. In this method, the phases of transmitted pilot subcarriers are deliberately correlated to the phases of data subcarriers. Accounting for this correlation in the receiver allows the required number of pilots needed for a sufficient estimation and compensation of phase noise to be reduced by a factor of 2 in comparison with the traditional pilot-aided phase noise estimation method. We carried out numerical simulation of a 40 Gb/s single polarization transmission system, and the outcome of the investigation indicates that by applying quasi-pilot-aided phase estimation, only four pilot subcarriers are needed for effective phase noise compensation. © 2014 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate the first experimental implementation of intensity-modulation and direct-detection 7.6Gb/s DBPSK-based DSB optical Fast-OFDM with a reduced subcarrier spacing equal to half of the symbol rate per subcarrier over 40km SMF. © 2012 OSA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A long-period grating (LPG) sensor is used to detect small variations in the concentration of an organic aromatic compound (xylene) in a paraffin (heptane) solution. A new design procedure is adopted and demonstrated to maximize the sensitivity of LPG (wavelength shift for a change in the surrounding refractive index, (dλ/dn3)) for a given application. The detection method adopted is comparable to the standard technique used in industry (high performance liquid chromatograph and UV spectroscopy) which has a relative accuracy between ∼±0.5% and 5%. The minimum detectable change in volumetric concentration is 0.04% in a binary fluid with the detection system presented. This change of concentration relates to a change in refractive index of Δn ∼ 6 × 10-5. © 2001 Elsevier Science B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have revisited soliton transmission in the new context of coherent optical detection optimizing and comparing digital backward propagation and in-line optical filtering as a means to suppress soliton timing and phase jitter. We find that in-line optical filtering allows one to improve the reach of the soliton system by up to the factor of 2. Our results show that nonlinear propagation can lead to performance beyond the nonlinear Shannon limit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a comparative study of the influence of dispersion induced phase noise for n-level PSK systems. From the analysis, we conclude that the phase noise influence for classical homodyne/heterodyne PSK systems is entirely determined by the modulation complexity (expressed in terms of constellation diagram) and the analogue demodulation format. On the other hand, the use of digital signal processing (DSP) in homodyne/intradyne systems renders a fiber length dependence originating from the generation of equalization enhanced phase noise. For future high capacity systems, high constellations must be used in order to lower the symbol rate to practically manageable speeds, and this fact puts severe requirements to the signal and local oscillator (LO) linewidths. Our results for the bit-error-rate (BER) floor caused by the phase noise influence in the case of QPSK, 16PSK and 64PSK systems outline tolerance limitations for the LO performance: 5 MHz linewidth (at 3-dB level) for 100 Gbit/s QPSK; 1 MHz for 400 Gbit/s QPSK; 0.1 MHz for 400 Gbit/s 16PSK and 1 Tbit/s 64PSK systems. This defines design constrains for the phase noise impact in distributed-feed-back (DFB) or distributed-Bragg-reflector (DBR) semiconductor lasers, that would allow moving the system capacity from 100 Gbit/s system capacity to 400 Gbit/s in 3 years (1 Tbit/s in 5 years). It is imperative at the same time to increase the analogue to digital conversion (ADC) speed such that the single quadrature symbol rate goes from today's 25 GS/s to 100 GS/s (using two samples per symbol). © 2014 by Walter de Gruyter Berlin/Boston.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a performance evaluation of a non-conventional approach to implement phase noise tolerant optical systems with multilevel modulation formats. The performance of normalized Viterbi-Viterbi carrier phase estimation (V-V CPE) is investigated in detail for circular m-level quadrature amplitude modulation (C-mQAM) signals. The intrinsic property of C-mQAM constellation points with a uniform phase separation allows a straightforward employment of V-V CPE without the need to adapt constellation. Compared with conventional feed-forward CPE for square QAM signals, the simulated results show an enhanced tolerance of linewidth symbol duration product (ΔvTs) at a low sensitivity penalty by using feed-forward CPE structure with C-mQAM. This scheme can be easily upgraded to higher order modulations without inducing considerable complexity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose an artificial neural network (ANN) equalizer for transmission performance enhancement of coherent optical OFDM (C-OOFDM) signals. The ANN equalizer showed more efficiency in combating both chromatic dispersion (CD) and single-mode fibre (SMF)-induced non-linearities compared to the least mean square (LMS). The equalizer can offer a 1.5 dB improvement in optical signal-to-noise ratio (OSNR) compared to LMS algorithm for 40 Gbit/s C-OOFDM signals when considering only CD. It is also revealed that ANN can double the transmission distance up to 320 km of SMF compared to the case of LMS, providing a nonlinearity tolerance improvement of ∼0.7 dB OSNR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the compensation of the equalization enhanced phase noise (EEPN) in the long-haul n-level phase shift keying (n-PSK) coherent optical transmission system, by employing a scheme of phase modulated optical pilot carrier. © OSA 2013.