573 resultados para numeri reali, Weierstrass, Pincherle, Hurwitz
Resumo:
A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.
Resumo:
This paper presents an analysis of solar radiation pressure induced coupled librations of gravity stabilized cylindrical spacecraft with a special reference to geostationary communication satellites. The Lagrangian approach is used to obtain the corresponding equations of motion. The solar induced torques are assumed to be free of librational angles and are represented by their Fourier expansion. The response and periodic solutions are obtained through linear and nonlinear analyses, using the method of harmonic balance in the latter case. The stability conditions are obtained using Routh-Hurwitz criteria. To establish the ranges of validity the analytic response is compared with the numerical solution. Finally, values of the system parameters are suggested to make the satellite behave as desired. Among these is a possible approach to subdue the solar induced roll resonance. It is felt that the approximate analysis presented here should significantly reduce the computational efforts involved in the design and stability analysis of the systems.
Resumo:
In this paper we construct low decoding complexity STBCs by using the Pauli matrices as linear dispersion matrices. In this case the Hurwitz-Radon orthogonality condition is shown to be easily checked by transferring the problem to $\mathbb{F}_4$ domain. The problem of constructing low decoding complexity STBCs is shown to be equivalent to finding certain codes over $\mathbb{F}_4$. It is shown that almost all known low complexity STBCs can be obtained by this approach. New codes are given that have the least known decoding complexity in particular ranges of rate.
Resumo:
We provide some conditions for the graph of a Holder-continuous function on (D) over bar, where (D) over bar is a closed disk in C, to be polynomially convex. Almost all sufficient conditions known to date - provided the function (say F) is smooth - arise from versions of the Weierstrass Approximation Theorem on (D) over bar. These conditions often fail to yield any conclusion if rank(R)DF is not maximal on a sufficiently large subset of (D) over bar. We bypass this difficulty by introducing a technique that relies on the interplay of certain plurisubharmonic functions. This technique also allows us to make some observations on the polynomial hull of a graph in C(2) at an isolated complex tangency.
Resumo:
Nano-indentation is a technique used to measure various mechanical properties like hardness, Young's modulus and the adherence of thin films and surface layers. It can be used as a quality control tool for various surface modification techniques like ion-implantation, film deposition processes etc. It is important to characterise the increasing scatter in the data measured at lower penetration depths observed in the nano-indentation, for the technique to be effectively applied. Surface roughness is one of the parameters contributing for the scatter. This paper is aimed at quantifying the nature and the amount of scatter that will be introduced in the measurement due to the roughness of the surface on which the indentation is carried out. For this the surface is simulated using the Weierstrass-Mandelbrot function which gives a self-affine fractal. The contact area of this surface with a conical indenter with a spherical cap at the tip is measured numerically. The indentation process is simulated using the spherical cavity model. This eliminates the indentation size effect observed at the micron and sub-micron scales. It has been observed that there exists a definite penetration depth in relation to the surface roughness beyond which the scatter is reduced such that reliable data could be obtained.
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) has been recently studied by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain a best ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) was introduced by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain an optimal ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
Resumo:
We find the sum of series of the form Sigma(infinity)(i=1) f(i)/i(r) for some special functions f. The above series is a generalization of the Riemann zeta function. In particular, we take f as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mezo's paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of pi.
Resumo:
There is a need to use probability distributions with power-law decaying tails to describe the large variations exhibited by some of the physical phenomena. The Weierstrass Random Walk (WRW) shows promise for modeling such phenomena. The theory of anomalous diffusion is now well established. It has found number of applications in Physics, Chemistry and Biology. However, its applications are limited in structural mechanics in general, and structural engineering in particular. The aim of this paper is to present some mathematical preliminaries related to WRW that would help in possible applications. In the limiting case, it represents a diffusion process whose evolution is governed by a fractional partial differential equation. Three applications of superdiffusion processes in mechanics, illustrating their effectiveness in handling large variations, are presented.
Resumo:
The element stiffness matrix of the equivalent beam or pipe element of the deformed leg of the platform is derived by the finite element method. The stresses and displacements of some damaged components are calculated, and the numeri-cal solutions agree well with those obtained by the fine mesh finite element method. Finally, as an application of this method, the stresses of some platform structures are calculated and analyzed.
Resumo:
La Universidad Nacional Agraria, institución de educación superior, autónoma que promueve el desarrollo y fortalecimiento de la sociedad nicaragüense, que forma profesionales en el campo agropecuario y forestal y genera conocimientos científicos, pone en manos de la sociedad nicaragüense la guía técnica MARANGO: Cultivo y utilización en la alimentación animal. La información que contiene es producto de la experiencia desarrollada por profesionales y técnicos de la universidad, de los resultados de investigaciones reali zadas por docentes y estudiantes de la Facultad de Ciencia Animal (FACA) y del intercambio de experiencias con instituciones afines que realizan investigación en el campo agropecuario y forestal. El objetivo de las GUIAS TÉCNICAS es apoyar a técnicos y productores en la toma de decisiones sobre la producción de los cultivos, el manejo pecuario y los procesos agroindustriales que den mayor competitividad al sector agropecuario y forestal. De igual forma, contribuir al manejo integral de las fincas, desde una perspectiva agro ecológica. La publicación de las GUIAS TÉCNICAS, se constituye en una las estrategias con las que cuenta la Universidad para la difusión de su quehacer universitario. Estas se unen al Centro Nacional de Información y Documentación Agropecuaria (CENIDA), así como a la infraestructura y equipo para la investigación (laboratorios y personal técnico), a los medios de divulgación de los resultados de la investigación, eventos científicos y la revista científica La Calera. Las GUIAS TÉCNICAS han sido elaboradas con el propósito de hacerlas acces i ble a una amplia audiencia, que incluye productores, profesionales, técnicos y estudiantes, de tal forma que se constituyan en una herramienta de consulta, enseñanza y aprendizaje, que motiven la investigación y la adopción de tec nologías, y que contribuyan de la mejor manera al desarrollo agropecuario y forestal de Nicaragua
Resumo:
提出了用小波变换计算粗糙表面分形维数的新方法,并基于Weierstrass-Mandelbrot函数(W-M函数Majumdar-Bhushan函数(M-B函数)对该方法进行了验证,结果表明该方法具有很高的 计算精度。应用小波变换方法对核态池沸腾试验板表面形貌的分形特征进行了评价,包括铜和不锈钢材料,轧制、砂纸打磨和表面机械抛光等3种加工方法生成5个粗糙度级别的试验板,研究结果表明该方法能有效评价表面形貌的分形特征。
Resumo:
This document is in Spanish. El Anuario Estadístico de Pesca 1986 se compone de cinco ca pítulos que describen diferentes aspectos de la actividad pesquera. Los cuatro primeros constituyen la cobertura bá sica de las distintas fases de la actividad pesquera, desde la identificación de sus propósitos específicos, según sec tor de participación~ medios y técnicas con que se reali zan~ industrialización y comercialización Catch statistics for Mexican waters 1986. (PDF has 320 pages.)
Resumo:
This document is in Spanish. El Anuario Estadístico de Pesca 1986 se compone de cinco ca pítulos que describen diferentes aspectos de la actividad pesquera. Los cuatro primeros constituyen la cobertura bá sica de las distintas fases de la actividad pesquera, desde la identificación de sus propósitos específicos, según sec tor de participación~ medios y técnicas con que se reali zan~ industrialización y comercialización Catch statistics for Mexican waters 1987. (PDF has 309 pages.)
Resumo:
Este libro trata de explicar con claridad y sencillez la forma canónica de Kronecker de haces de matrices para la relación de equivalencia estricta. El tema es importante para los ingenieros, físicos, químicos, economistas y otros científicos que estudian sistemas lineales con control, por lo que una introducción asequible y rigurosa se echa de menos. También esperamos que el libro sea de utilidad para los matemáticos en un segundo curso de álgebra lineal como complemento natural del estudio de la forma canónica de Jordan. La forma canónica de Kronecker es llamada igualmente de Weierstrass-Kronecker, ya que Weierstrass desarrolla la teoría de los divisores elementales y Kronecker la de los índices minimales. Desde un punto de vista epistemológico e histórico deben relacionarse estas teorías con el estudio geométrico de los haces de cónicas y cuádricas para la formación del estudiante de matemáticas. Este libro no intenta establecer estas conexiones. Al lector que desee proseguir en los precedentes históricos le recomendamos el libro sobre historia de las matemáticas de Bourbaki y también artículos de Robert Thompson, Frank Uhlig y otros en la revista Linear Algebra and Its Applications en los años 1980.