982 resultados para nozzle sediment insert
Resumo:
During the 1950s and 1960s, F.J.H. Mackereth developed and published plans for a series of pneumatic samplers for lake sediments. Unfortunately, as the equipment was continually evolving during ensuing research, no user manuals, beyond the original publication, had been produced. Over the last few years there have been a few potentially very serious accidents with the 1-metre corer, which has prompted the authors to carry out a risk assessment. This highlighted two weaknesses in the design and its later developments. They can be corrected simply by checking for screw threads that may have been added to the exhaust port on the mini-corer, and by changing the operating procedure. An A4 nine-page user manual is now available from the authors. A small charge ( pound sterling 10 in 1998) will be made to cover handling costs and postage.
Resumo:
Research laboratories in the Burrishoole catchment have been the focus of salmonid research since 1955. One aspect of the research has been to monitor the number of salmon and sea trout migrating to sea as smolts and returning to the catchment as adults. In the early 1990s it became clear that the smolt output from the catchment had declined over the previous two decades. At about the same time the presence of fine particles of peat silt in the hatchery became increasingly apparent and led to a higher incidence of mortality of young fry. These observations and management difficulties led to a study of silt transport in the surface waters of the catchment, which is described in this article. The authors describe geology, soils, climate and hydrology of Burrishoole before examining the sediment deposition in Lough Feeagh.
Resumo:
Description of a simple method for counting bacteria with active electron transport systems in water and sediment samples. Sodium succinate, NADH and NADPH served as electron donors. It is possible to see several sites of electron transport in the larger cells. Especially impressive are the plankton-algae, protozoa, and small metazoa. This is a partial translation of the ”method” section only.
Resumo:
To be able to carry out physical, chemical and biological investigations on a lake, one needs a thorough knowledge of the volume of water and the shape of the lake basin. Little is known about the about the morphology of the lakes in Schleswig-Holstein and its ecological consequences. For this research a 30 KHz echo sounder with sediment transceiver was used to carry out profile determinations (echo soundings). This apparatus continuously records on paper the different reflexions and absorptions of the sediment and water body in the corresponding depth. By this, acoustically noticeable layers and different densities in the sediment and 'scattering layers' in the water body due to physical, chemical and biological reasons (e.g. plans and single fish) are made visible. Result are summarised here regarding the echo soundings in Blunker See.
Resumo:
Erosion is concentrated in steep landscapes such that, despite accounting for only a small fraction of Earth’s total surface area, these areas regulate the flux of sediment to downstream basins, and their rugged morphology records transient changes (or lack thereof) in geologic and climatic forcing. Steep landscapes are geomorphically active; large sediment fluxes and rapid landscape evolution rates can create or destroy habitat for humans and wildlife alike, and landslides, debris flows, and floods common in mountainous areas represent a persistent natural and structural hazard. Despite the central role that steep landscapes play in the geosciences and in landscape management, the processes controlling their evolution have been poorly studied compared to lower-gradient areas. This thesis focuses on the basic mechanics of sediment transport and bedrock incision in steep landscapes, as these are the fundamental processes which set the pace and style of landscape evolution. Chapter 1 examines the spatial distribution of slow-moving landslides; these landslides can dominate sediment fluxes to river networks, but the controls on their occurrence are poorly understood. Using a case-study along the San Andreas Fault, California, I show that slow-moving landslides preferentially occur near the fault, suggesting a rock-strength control on landslide distribution. Chapter 2 provides the first field-measurements of incipient sediment motion in streams steeper than 14% and shows a large influence of slope-dependent flow hydraulics and grain-scale roughness on particle motion. Chapter 3 presents experimental evidence for bedrock erosion by suspended sediment, suggesting that, in contrast to prevailing theoretical predictions, suspension-regime transport in steep streams can be the dominant erosion agent. Steep streams are often characterized by the presence of waterfalls and bedrock steps which can have locally high rates of erosion; Chapters 4 and 5 present newly developed, experimentally validated theory on sediment transport through and bedrock erosion in waterfall plunge pools. Finally, Chapter 6 explores the formation of a bedrock slot canyon where interactions between sediment transport and bedrock incision lead to the formation of upstream-propagating bedrock step-pools and waterfalls.
Resumo:
The physical effects of river regulation in the U.K. by impoundments have attracted most attention from hydrologists and engineers concerned with predicting and maintaining discharge regimes for water supply. Grimshaw & Lewin (1980) suggested two basic methods to investigate the effects of regulation on suspended sediment discharge: (i) Compare the river load before and after reservoir construction, and (ii) adopt a paired catchment approach. The former method assumes stationarity of process in the natural system. The latter method, involving selecting two adjacent catchments of similar physical attributes, one regulated and one unregulated, assumes constancy of process spatially. In this report both approaches are adopted to examine the turbidity and suspended sediment concentration regime of the regulated River Tees. Neither approach was entirely satisfactory in the present case. This report examines the discharge and turbidity record consisting of approximately 4000 paired data points, representative of an 11-year post-impoundment period, that has been examined for the River Tees at Broken Scar, Darlington. A small amount of suspended sediment concentration data was also processed: these data are representative of both the pre-impoundment and post-impoundment sediment regime.
Resumo:
Gaseous nitrogen and argon were injected into a primary stream of air moving at Mach 2.56. The gases were injected at secondary to primary total pressure ratios from 3.2 to 28.6 through four different nozzles. Two nozzles, one sonic and one supersonic (M = 3.26), injected normal to the primary stream; and two sonic nozzles injected at 45° angles to the primary flow, one injecting upstream and the other downstream. Data consisted of static pressure measurements on the wall near the injector, total pressure profiles in the wake of the injectant plume, and concentration measurements downstream of the flow. Scale parameters were calculated based upon an analytical model of the flow field and their validity verified by experimental results. These scale heights were used to compare normalized wall side forces for the different nozzles and to compare the mixing of the two streams.
Resumo:
I. The attenuation of sound due to particles suspended in a gas was first calculated by Sewell and later by Epstein in their classical works on the propagation of sound in a two-phase medium. In their work, and in more recent works which include calculations of sound dispersion, the calculations were made for systems in which there was no mass transfer between the two phases. In the present work, mass transfer between phases is included in the calculations.
The attenuation and dispersion of sound in a two-phase condensing medium are calculated as functions of frequency. The medium in which the sound propagates consists of a gaseous phase, a mixture of inert gas and condensable vapor, which contains condensable liquid droplets. The droplets, which interact with the gaseous phase through the interchange of momentum, energy, and mass (through evaporation and condensation), are treated from the continuum viewpoint. Limiting cases, for flow either frozen or in equilibrium with respect to the various exchange processes, help demonstrate the effects of mass transfer between phases. Included in the calculation is the effect of thermal relaxation within droplets. Pressure relaxation between the two phases is examined, but is not included as a contributing factor because it is of interest only at much higher frequencies than the other relaxation processes. The results for a system typical of sodium droplets in sodium vapor are compared to calculations in which there is no mass exchange between phases. It is found that the maximum attenuation is about 25 per cent greater and occurs at about one-half the frequency for the case which includes mass transfer, and that the dispersion at low frequencies is about 35 per cent greater. Results for different values of latent heat are compared.
II. In the flow of a gas-particle mixture through a nozzle, a normal shock may exist in the diverging section of the nozzle. In Marble’s calculation for a shock in a constant area duct, the shock was described as a usual gas-dynamic shock followed by a relaxation zone in which the gas and particles return to equilibrium. The thickness of this zone, which is the total shock thickness in the gas-particle mixture, is of the order of the relaxation distance for a particle in the gas. In a nozzle, the area may change significantly over this relaxation zone so that the solution for a constant area duct is no longer adequate to describe the flow. In the present work, an asymptotic solution, which accounts for the area change, is obtained for the flow of a gas-particle mixture downstream of the shock in a nozzle, under the assumption of small slip between the particles and gas. This amounts to the assumption that the shock thickness is small compared with the length of the nozzle. The shock solution, valid in the region near the shock, is matched to the well known small-slip solution, which is valid in the flow downstream of the shock, to obtain a composite solution valid for the entire flow region. The solution is applied to a conical nozzle. A discussion of methods of finding the location of a shock in a nozzle is included.
Resumo:
Part I:
The perturbation technique developed by Rannie and Marble is used to study the effect of droplet solidification upon two-phase flow in a rocket nozzle. It is shown that under certain conditions an equilibrium flow exists, where the gas and particle phases have the same velocity and temperature at each section of the nozzle. The flow is divided into three regions: the first region, where the particles are all in the form of liquid droplets; a second region, over which the droplets solidify at constant freezing temperature; and a third region, where the particles are all solid. By a perturbation about the equilibrium flow, a solution is obtained for small particle slip velocities using the Stokes drag law and the corresponding approximation for heat transfer between the particle and gas phases. Singular perturbation procedure is required to handle the problem at points where solidification first starts and where it is complete. The effects of solidification are noticeable.
Part II:
When a liquid surface, in contact with only its pure vapor, is not in the thermodynamic equilibrium with it, a net condensation or evaporation of fluid occurs. This phenomenon is studied from a kinetic theory viewpoint by means of moment method developed by Lees. The evaporation-condensation rate is calculated for a spherical droplet and for a liquid sheet, when the temperatures and pressures are not too far removed from their equilibrium values. The solutions are valid for the whole range of Knudsen numbers from the free molecule to the continuum limit. In the continuum limit, the mass flux rate is proportional to the pressure difference alone.
Resumo:
Phosalone is a non systematic, wide spectrum organophosphate pesticide which was discovered in 1961 in the laboratories of the Societe des Usines Chimique Rhone-Poulenc in France. It has been approved for commercial use since 1964 in France, in Australia since 1966, in the United Kingdom in 1967 and in many other countries including Japan, Egypt, USSR and the USA. This study provides a full literature review on all aspects of phosalone including its physical, biological and chemical characteristics, and analytical methods of analysis with particular reference to soils/sediments. Furthermore, it aims to develop a method for the determintion of phosalone in aquatic sediments and to determine the adsorption of phosalone onto kaolinite.
Resumo:
This annotated bibliography is intended to give as reasonably complete a review of the existing literature as possible, and to offer some practical guidance in the selection and operation of sediment traps in future monitoring programmes.
Resumo:
Natural calcite precipitation in lakes is a well-known control mechanism of eutrophication. In hard-water lakes, calcite deposits on the flat bottoms of shallow lakes and near the shores of deeper lakes resulted from biogenic decalcification during the millenia after the last glacial period. The objective of a new restoration technology is to intensify the natural process of precipitation by utilizing the different qualities of calcareous mud layers. In a pilot experiment in Lake Rudower See, East Germany, phosphorus-poor deeper layers of the sediments were flushed out and spread over the phosphorus-rich uppermost sediments, to promote the co- precipitation of calcite with phosphorus from the water-column.
Resumo:
Esthwaite Water is the most productive or eutrophic lake in the English Lake District. Since 1945 its water quality has been determined from weekly or biweekly measurements of temperature, oxygen, plant nutrients and phytoplankton abundance. The lake receives phosphorus from its largely lowland-pasture catchment, sewage effluent from the villages of Hawkshead and Near Sawrey, and from a cage-culture fish farm. From 1986 phosphorus has been removed from the sewage effluent of Hawkshead which was considered to contribute between 47% and 67% of the total phosphorus loading to the lake. At the commencement of phosphorus removal regular measurements of phosphorus in the superficial 0-4 cm layer of lake sediment were made from cores collected at random sites. Since 1986 the mean annual concentration of alkali-extractable sediment phosphorus has decreased by 23%. This change is not significant at the 5% level but nearly so. There has been no marked change in water quality over this period. Summer dominance of blue-green algae which arose in the early 1980s after decline of the previous summer forms, Ceratium spp., has been maintained. Improvement in water quality is unlikely to be achieved at the present phosphorus loading.