924 resultados para novel inhibitor screening
Resumo:
The aspartic protease BACE1 (β-amyloid precursor protein cleaving enzyme, β-secretase) is recognized as one of the most promising targets in the treatment of Alzheimer's disease (AD). The accumulation of β-amyloid peptide (Aβ) in the brain is a major factor in the pathogenesis of AD. Aβ is formed by initial cleavage of β-amyloid precursor protein (APP) by β-secretase, therefore BACE1 inhibition represents one of the therapeutic approaches to control progression of AD, by preventing the abnormal generation of Aβ. For this reason, in the last decade, many research efforts have focused at the identification of new BACE1 inhibitors as drug candidates. Generally, BACE1 inhibitors are grouped into two families: substrate-based inhibitors, designed as peptidomimetic inhibitors, and non-peptidomimetic ones. The research on non-peptidomimetic small molecules BACE1 inhibitors remains the most interesting approach, since these compounds hold an improved bioavailability after systemic administration, due to a good blood-brain barrier permeability in comparison to peptidomimetic inhibitors. Very recently, our research group discovered a new promising lead compound for the treatment of AD, named lipocrine, a hybrid derivative between lipoic acid and the AChE inhibitor (AChEI) tacrine, characterized by a tetrahydroacridinic moiety. Lipocrine is one of the first compounds able to inhibit the catalytic activity of AChE and AChE-induced amyloid-β aggregation and to protect against reactive oxygen species. Due to this interesting profile, lipocrine was also evaluated for BACE1 inhibitory activity, resulting in a potent lead compound for BACE1 inhibition. Starting from this interesting profile, a series of tetrahydroacridine analogues were synthesised varying the chain length between the two fragments. Moreover, following the approach of combining in a single molecule two different pharmacophores, we designed and synthesised different compounds bearing the moieties of known AChEIs (rivastigmine and caproctamine) coupled with lipoic acid, since it was shown that dithiolane group is an important structural feature of lipocrine for the optimal inhibition of BACE1. All the tetrahydroacridines, rivastigmine and caproctamine-based compounds, were evaluated for BACE1 inhibitory activity in a FRET (fluorescence resonance energy transfer) enzymatic assay (test A). With the aim to enhancing the biological activity of the lead compound, we applied the molecular simplification approach to design and synthesize novel heterocyclic compounds related to lipocrine, in which the tetrahydroacridine moiety was replaced by 4-amino-quinoline or 4-amino-quinazoline rings. All the synthesized compounds were also evaluated in a modified FRET enzymatic assay (test B), changing the fluorescent substrate for enzymatic BACE1 cleavage. This test method guided deep structure-activity relationships for BACE1 inhibition on the most promising quinazoline-based derivatives. By varying the substituent on the 2-position of the quinazoline ring and by replacing the lipoic acid residue in lateral chain with different moieties (i.e. trans-ferulic acid, a known antioxidant molecule), a series of quinazoline derivatives were obtained. In order to confirm inhibitory activity of the most active compounds, they were evaluated with a third FRET assay (test C) which, surprisingly, did not confirm the previous good activity profiles. An evaluation study of kinetic parameters of the three assays revealed that method C is endowed with the best specificity and enzymatic efficiency. Biological evaluation of the modified 2,4-diamino-quinazoline derivatives measured through the method C, allow to obtain a new lead compound bearing the trans-ferulic acid residue coupled to 2,4-diamino-quinazoline core endowed with a good BACE1 inhibitory activity (IC50 = 0.8 mM). We reported on the variability of the results in the three different FRET assays that are known to have some disadvantages in term of interference rates that are strongly dependent on compound properties. The observed results variability could be also ascribed to different enzyme origin, varied substrate and different fluorescent groups. The inhibitors should be tested on a parallel screening in order to have a more reliable data prior to be tested into cellular assay. With this aim, preliminary cellular BACE1 inhibition assay carried out on lipocrine confirmed a good cellular activity profile (EC50 = 3.7 mM) strengthening the idea to find a small molecule non-peptidomimetic compound as BACE1 inhibitor. In conclusion, the present study allowed to identify a new lead compound endowed with BACE1 inhibitory activity in submicromolar range. Further lead optimization to the obtained derivative is needed in order to obtain a more potent and a selective BACE1 inhibitor based on 2,4-diamino-quinazoline scaffold. A side project related to the synthesis of novel enzymatic inhibitors of BACE1 in order to explore the pseudopeptidic transition-state isosteres chemistry was carried out during research stage at Università de Montrèal (Canada) in Hanessian's group. The aim of this work has been the synthesis of the δ-aminocyclohexane carboxylic acid motif with stereochemically defined substitution to incorporating such a constrained core in potential BACE1 inhibitors. This fragment, endowed with reduced peptidic character, is not known in the context of peptidomimetic design. In particular, we envisioned an alternative route based on an organocatalytic asymmetric conjugate addition of nitroalkanes to cyclohexenone in presence of D-proline and trans-2,5-dimethylpiperazine. The enantioenriched obtained 3-(α-nitroalkyl)-cyclohexanones were further functionalized to give the corresponding δ-nitroalkyl cyclohexane carboxylic acids. These intermediates were elaborated to the target structures 3-(α-aminoalkyl)-1-cyclohexane carboxylic acids in a new readily accessible way.
Resumo:
The chronic myeloid leukemia complexity and the difficulties of disease eradication have recently led to the development of drugs which, together with the inhibitors of TK, could eliminate leukemia stem cells preventing the occurrence of relapses in patients undergoing transplantation. The Hedgehog (Hh) signaling pathway positively regulates the self-renewal and the maintenance of leukemic stem cells and not, and this function is evolutionarily conserved. Using Drosophila as a model, we studied the efficacy of the SMO inhibitor drug that inhibit the human protein Smoothened (SMO). SMO is a crucial component in the signal transduction of Hh and its blockade in mammals leads to a reduction in the disease induction. Here we show that administration of the SMO inhibitor to animals has a specific effect directed against the Drosophila ortholog protein, causing loss of quiescence and hematopoietic precursors mobilization. The SMO inhibitor induces in L3 larvae the appearance of melanotic nodules generated as response by Drosophila immune system to the increase of its hemocytes. The same phenotype is induced even by the dsRNA:SMO specific expression in hematopoietic precursors of the lymph gland. The drug action is also confirmed at cellular level. The study of molecular markers has allowed us to demonstrate that SMO inhibitor leads to a reduction of the quiescent precursors and to an increase of the differentiated cells. Moreover administering the inhibitor to heterozygous for a null allele of Smo, we observe a significant increase in the phenotype penetrance compared to administration to wild type animals. This helps to confirm the specific effect of the drug itself. These data taken together indicate that the study of inhibitors of Smo in Drosophila can represent a useful way to dissect their action mechanism at the molecular-genetic level in order to collect information applicable to the studies of the disease in humans.
Resumo:
Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.
Resumo:
Sphingosine kinase 1 (SK1) is a key enzyme in the generation of sphingosine 1-phosphate (S1P) which critically regulates a variety of important cell responses such as proliferation and migration. Therefore, inhibition of SK-1 has been suggested to be an attractive approach to treat tumor growth and metastasis formation.
Resumo:
Voclosporin, a novel immunomodulatory drug inhibiting the calcineurin enzyme, was developed to prevent organ graft rejection and to treat autoimmune diseases. The chemical structure of voclosporin is similar to that of cyclosporine A, with a difference in one amino acid, leading to superior calcineurin inhibition and less variability in plasma concentration. Compared with placebo, voclosporin may significantly reduce inflammation and prevent recurrences of inflammation in patients with noninfectious uveitis. Future studies have to show if these advantages are accompanied by greater clinical efficacy and fewer side effects compared with the classic calcineurin inhibitors.
Resumo:
Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLX(L). Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.Oncogene advance online publication, 1 October 2012; doi:10.1038/onc.2012.416.
Resumo:
PURPOSE OF REVIEW: Therapeutic inhibition of tumour necrosis factor-alpha strongly increases the risk of reactivation in latent tuberculosis infection. Recent blood tests based on antigen-specific T cell response and measuring production of interferon-gamma, so called interferon-gamma release assays (IGRAs), are promising novel tools to identify infected patients. The performance of diagnostic testing for latent tuberculosis infection in patients with rheumatic diseases will be discussed. RECENT FINDINGS: In patients with rheumatoid arthritis, IGRAs are more sensitive and more specific than traditional tuberculin skin testing. They are unaffected by Bacillus-Calmette-Guérin vaccination and most nontuberculous mycobacteria. Most comparative studies show a better performance of the IGRAs than tuberculin skin testing in terms of a higher specificity. The rate of indeterminate results may be affected by glucocorticoids and the underlying disease but appears independent of disease-modifying antirheumatic drugs. Despite using identical Mycobacterium tuberculosis antigens, the two commercially available tests show differences in clinical performance. SUMMARY: The current information about the performance of the tuberculin skin testing and the IGRAs in the detection of latent tuberculosis infection in patients with rheumatic diseases strongly suggest a clinically relevant advantage of the IGRAs. Their use will help to reduce overuse and underuse of preventive treatment in tumour necrosis factor inhibition.
Resumo:
Cannabinoid receptor 2 (CB(2) receptor) ligands are potential candidates for the therapy of chronic pain, inflammatory disorders, atherosclerosis, and osteoporosis. We describe the development of pharmacophore models for CB(2) receptor ligands, as well as a pharmacophore-based virtual screening workflow, which resulted in 14 hits for experimental follow-up. Seven compounds were identified with K(i) values below 25 microM. The CB(2) receptor-selective pyridine tetrahydrocannabinol analogue 8 (K(i) = 1.78 microM) was identified as a CB(2) partial agonist. Acetamides 12 (K(i) = 1.35 microM) and 18 (K(i) = 2.1 microM) represent new scaffolds for CB(2) receptor-selective antagonists and inverse agonists, respectively. Overall, our pharmacophore-based workflow yielded three novel scaffolds for the chemical development of CB(2) receptor ligands.
Resumo:
The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.
Resumo:
The range of novel psychoactive substances (NPS) including phenethylamines, cathinones, piperazines, tryptamines, etc. is continuously growing. Therefore, fast and reliable screening methods for these compounds are essential and needed. The use of dried blood spots (DBS) for a fast straightforward approach helps to simplify and shorten sample preparation significantly. DBS were produced from 10 µl of whole blood and extracted offline with 500 µl methanol followed by evaporation and reconstitution in mobile phase. Reversed-phase chromatographic separation and mass spectrometric detection (RP-LC-MS/MS) was achieved within a run time of 10 min. The screening method was validated by evaluating the following parameters: limit of detection (LOD), matrix effect, selectivity and specificity, extraction efficiency, and short-term and long-term stability. Furthermore, the method was applied to authentic samples and results were compared with those obtained with a validated whole blood method used for Routine analysis of NPS. LOD was between 1 and 10 ng/ml. No interference from Matrix compounds was observed. The method was proven to be specific and selective for the analytes, although with limitations for 3-FMC/flephedrone and MDDMA/MDEA. Mean extraction efficiency was 84.6 %. All substances were stable in DBS for at least a week when cooled. Cooling was essential for the stability of cathinones. Prepared samples were stable for at least 3 days. Comparison to the validated whole blood method yielded similar results. DBS were shown to be useful in developing a rapid screening method for NPS with simplified sample preparation. Copyright © 2013 John Wiley & Sons, Ltd
Resumo:
BACKGROUND: Virtual reality testing of everyday activities is a novel type of computerized assessment that measures cognitive, executive, and motor performance as a screening tool for early dementia. This study used a virtual reality day-out task (VR-DOT) environment to evaluate its predictive value in patients with mild cognitive impairment (MCI). METHODS: One hundred thirty-four patients with MCI were selected and compared with 75 healthy control subjects. Participants received an initial assessment that included VR-DOT, a neuropsychological evaluation, magnetic resonance imaging (MRI) scan, and event-related potentials (ERPs). After 12 months, participants were assessed again with MRI, ERP, VR-DOT, and neuropsychological tests. RESULTS: At the end of the study, we differentiated two subgroups of patients with MCI according to their clinical evolution from baseline to follow-up: 56 MCI progressors and 78 MCI nonprogressors. VR-DOT performance profiles correlated strongly with existing predictive biomarkers, especially the ERP and MRI biomarkers of cortical thickness. CONCLUSIONS: Compared with ERP, MRI, or neuropsychological tests alone, the VR-DOT could provide additional predictive information in a low-cost, computerized, and noninvasive way.
Resumo:
Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth anomaly that requires prolonged multidisciplinary rehabilitation. Although variation in several genes has been identified as contributing to NSCLP, most of the genetic susceptibility loci have yet to be defined. To identify additional contributory genes, a high-throughput genomic scan was performed using the Illumina Linkage IVb Panel platform. We genotyped 6008 SNPs in nine non-Hispanic white NSCLP multiplex families and a single large African-American NSCLP multiplex family. Fourteen chromosomal regions were identified with LOD>1.5, including six regions not previously reported. Analysis of the data from the African-American and non-Hispanic white families revealed two likely chromosomal regions: 8q21.3-24.12 and 22q12.2-12.3 with LOD scores of 2.98 and 2.66, respectively. On the basis of biological function, syndecan 2 (SDC2) and growth differentiation factor 6 (GDF6) in 8q21.3-24.12 and myosin heavy-chain 9, non-muscle (MYH9) in 22q12.2-12.3 were selected as candidate genes. Association analyses from these genes yielded marginally significant P-values for SNPs in SDC2 and GDF6 (0.01
Resumo:
Matrix metalloproteinases (MMPs) and TNF-alpha converting enzyme (TACE) contribute to the pathophysiology of bacterial meningitis. To date, MMP-inhibitors studied in models of meningitis were compromised by their hydrophobic nature. We investigated the pharmacokinetics and the effect of TNF484, a water-soluble hydroxamate-based inhibitor of MMP and TACE, on disease parameters and brain damage in a neonatal rat model of pneumococcal meningitis. At 1 mg/kg q6h TNF484 reduced soluble TNF-alpha and the collagen degradation product hydroxyproline in the cerebrospinal fluid. Clinically, TNF484 attenuated the incidence of seizures and was neuroprotective in the cortex. Water-soluble MMP-inhibitors may hold promise in the therapy of bacterial meningitis.