980 resultados para norleucine mutant
Resumo:
The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.
Resumo:
The authors previously reported the construction of a glycoprotein E-deleted (gE-) mutant of bovine herpesvirus type 1.2a (BHV-1.2a). This mutant, 265gE-, was designed as a vaccinal strain for differential vaccines, allowing the distinction between vaccinated and naturally infected cattle. In order to determine the safety and efficacy of this candidate vaccine virus, a group of calves was inoculated with 265gE-. The virus was detected in secretions of inoculated calves to lower titres and for a shorter period than the parental virus inoculated in control calves. Twenty one days after inoculation, the calves were challenged with the wild type parental virus. Only mild signs of infection were detected on vaccinated calves, whereas non-vaccinated controls displayed intense rhinotracheitis and shed virus for longer and to higher titres than vaccinated calves. Six months after vaccination, both vaccinated and control groups were subjected to reactivation of potentially latent virus. The mutant 265gE- could not be reactivated from vaccinated calves. The clinical signs observed, following the reactivation of the parental virus, were again much milder on vaccinated than on non-vaccinated calves. Moreover, parental virus shedding was considerably reduced on vaccinated calves at reactivation. In view of its attenuation, immunogenicity and protective effect upon challenge and reactivation with a virulent BHV-1, the mutant 265gE- was shown to be suitable for use as a BHV-1 differential vaccine virus.
Resumo:
A new viviparous mutant of maize (Zea mays L.), associated with genetic instability and designated viviparous-12 (vp12), was identified in a synthetic Tuxpeño adapted to tropical regions. In the present work, the linkage group of this new locus was determined. Progenies of inbred line L477 segregating for the vp12 mutant were crossed with waxy-marked reciprocal translocation stocks. The phenotypic frequencies of the wx and vp12 mutants were analyzed in F2 progenies. The results demonstrated that the Viviparous-12 locus of maize is located on the long arm of chromosome 6.
Resumo:
A recessive mutant cell line, B7, which is partially responsive to both interferon (IFN)- a and IFN-g is described. B7 was FACS sorted from a cellular pool, which was obtained from the parental cell line 2C4, after several rounds of mutagenesis. The partial responsiveness to IFN was observed both in terms of expression of cell surface markers (CD2, class I and II HLAs) and mRNA expression of IFN-stimulated genes (9-27; 6-16; 2'-5' OAS; GBP and HLA-DRa). A genetic cross with the U4 mutant (JAK1-, a member of the Janus family of nonreceptor tyrosine kinase) did not restore full IFN-responsiveness to B7, and JAK1 cDNA transfection into B7 restored the wild phenotype of the cell line, defining B7 as a member of the U4 complementation group. Nevertheless, JAK1 mRNA was not detected in this mutant. Transcriptional regulator complexes such as IRF1/2 (IFN-regulatory factor) and ISGF3-g (IFN-stimulated gene factor) were constitutively formed in the B7 mutant and co-migrated with the IFN-induced complexes expressed in the parental cell line 2C4. Thus, this cell line seems to be useful for understanding cis-acting elements governing JAK1 mRNA expression.
Resumo:
We have examined the role of cell surface glycosaminoglycans in cell division: adhesion and proliferation of Chinese hamster ovary (CHO) cells. We used both wild-type (CHO-K1) cells and a mutant (CHO-745) which is deficient in the synthesis of proteoglycans due to lack of activity of xylosyl transferase. Using different amounts of wild-type and mutant cells, little adhesion was observed in the presence of laminin and type I collagen. However, when fibronectin or vitronectin was used as substrate, there was an enhancement in the adhesion of wild-type and mutant cells. Only CHO-K1 cells showed a time-dependent adhesion on type IV collagen. These results suggest that the two cell lines present different adhesive profiles. Several lines of experimental evidence suggest that heparan sulfate proteoglycans play a role in cell adhesion as positive modulators of cell proliferation and as key participants in the process of cell division. Proliferation and cell cycle assays clearly demonstrate that a decrease in the amount of glycosaminoglycans does not inhibit the proliferation of mutant CHO-745 cells when compared to the wild type CHO-K1, in agreement with the findings that both CHO-K1 and CHO-745 cells take 8 h to enter the S phase.
Resumo:
Hereditary spherocytosis (HS) is a common inherited anemia characterized by the presence of spherocytic red cells. Defects in several membrane protein genes have been involved in the pathogenesis of HS. ß-Spectrin-related HS seems to be common. We report here a new mutation in the ß-spectrin gene coding region in a patient with hereditary spherocytosis. The patient presented acanthocytosis and spectrin deficiency and, at the DNA level, a novel frameshift mutation leading to HS, i.e., a C deletion at codon 1392 (ß-spectrin São PauloII), exon 20. The mRNA encoding ß-spectrin São PauloII was very unstable and the mutant protein was not detected in the membrane or in other cellular compartments. It is interesting to note that frameshift mutations of the ß-spectrin gene at the 3' end allow the insertion of the mutant protein in the red cell membrane, leading to a defect in the auto-association of the spectrin dimers and consequent elliptocytosis. On the other hand, ß-spectrin São PauloII protein was absent in the red cell membrane, leading to spectrin deficiency, HS and the presence of acanthocytes.
Resumo:
The morphology of the skin of the mutant hairless USP mouse was studied by histological, histochemical and immunohistochemical methods and compared to the skin of BALB/c mice. Representative sections of the dorsal skin from mice of both strains aged 18 days, and 1, 3, 6, and 8 months were studied. Sections stained with hematoxylin and eosin showed cystic formations called utricles and dermal cysts in the dermis that increased in size and number during growth. Skin thickness increased significantly at 8 months. Sections stained with picrosirius and examined with polarized light, displayed different colors, suggesting different thicknesses of dermal collagen fibers (probably types I and III). Weigert, Verhoeff and resorcin-fuchsin stains revealed fibers of the elastic system. The PAS and Alcian blue methods revealed neutral and acid glycosaminoglycans in the skin ground substance of both mouse strains. Immunohistochemical staining for fibronectin and laminin did not show differences between the mutant and BALB/c mice. Mast cells stained by the Gomori method and macrophages positive for HAM 56 antibodies were observed in both mouse strains. Except for the presence of enlarged cysts in the hairless strain, no qualitative differences were found during development of the skin of BALB/c and the mutant hairless mice.
Resumo:
The expression of sarcoplasmic reticulum SERCA1a Ca2+-ATPase wild-type and D351E mutants was optimized in yeast under the control of a galactose promoter. Fully active wild-type enzyme was recovered in yeast microsomal membrane fractions in sufficient amounts to permit a rapid and practical assay of ATP hydrolysis and phosphoenzyme formation from ATP or Pi. Mutant and wild-type Ca2+-ATPase were assayed for phosphorylation by Pi under conditions that are known to facilitate this reaction in the wild-type enzyme, including pH 6.0 or 7.0 at 25ºC in the presence of dimethylsulfoxide. Although glutamyl (E) and aspartyl (D) residue side chains differ by only one methylene group, no phosphoenzyme could be detected in the D351E mutant, even upon the addition of 40% dimethylsulfoxide and 1 mM 32Pi in the presence of 10 mM EGTA and 5 mM MgCl2. These results show that in the D351E mutant, increasing hydrophobicity of the site with inorganic solvent was not a sufficient factor for the required abstraction of water in the reaction of E351 with Pi to form a glutamylphosphate (P-E351) phosphoenzyme moiety. Mutation D351E may disrupt the proposed alignment of the reactive water molecule with the aspartylphosphate (P-D351) moiety in the phosphorylation site, which may be an essential alignment both in the forward reaction (hydrolysis of aspartylphosphate) and in the reverse reaction (abstraction of water upon formation of an aspartylphosphate intermediate).
Resumo:
Bovine herpesvirus 5 (BoHV-5), the agent of herpetic meningoencephalitis in cattle, is an important pathogen of cattle in South America and several efforts have been made to produce safer and more effective vaccines. In the present study, we investigated in rabbits the virulence of three recombinant viruses constructed from a neurovirulent Brazilian BoHV-5 strain (SV507/99). The recombinants are defective in glycoprotein E (BoHV-5gEΔ), thymidine kinase (BoHV-5TKΔ) and both proteins (BoHV-5gEΔTKΔ). Rabbits inoculated with the parental virus (N = 8) developed neurological disease and died or were euthanized in extremis between days 7 and 13 post-infection (pi). Infectivity was detected in several areas of their brains. Three of 8 rabbits inoculated with the recombinant BoHV-5gEΔ developed neurological signs between days 10 and 15 pi and were also euthanized. A more restricted virus distribution was detected in the brain of these animals. Rabbits inoculated with the recombinants BoHV-5TKΔ (N = 8) or BoHV-5gEΔTKΔ (N = 8) remained healthy throughout the experiment in spite of variable levels of virus replication in the nose. Dexamethasone (Dx) administration to rabbits inoculated with the three recombinants at day 42 pi did not result in viral reactivation, as demonstrated by absence of virus shedding and/or increase in virus neutralizing titers. Nevertheless, viral DNA was detected in the trigeminal ganglia or olfactory bulbs of all animals at day 28 post-Dx, demonstrating they were latently infected. These results show that recombinants BoHV-5TKΔ and BoHV-5gEΔTKΔ are attenuated for rabbits and constitute potential vaccine candidates upon the confirmation of this phenotype in cattle.
Resumo:
Mortierella pusilla is a susceptible host and supports good growth of the mycoparasite, Piptocephalis virginiana. Uninucleate spores of M. pusilla were sUbjected to N-methyl-N'-nitro-nitrosoguanidine (MNNG). To attain a high mutation frequency , a 1o-minute exposure to 10 mg/ml MNNG was used and lead to the survival of about 10 % of the spores. The exposed spores then were plated on chitin or milk plates. Approximately 30,000 colonies were examined after mutagenesis on the screening media. A strain, MUT23 , with abnormal slow growth morphology was found to delay parasitism by £. virginiana. The particular morphology was not due to auxotrophy, because this strain displayed normal hyphae when glucose was used as the sole carbon source. One interesting phenomenon was that MUT23 showed an extensive clearing zone around the colony on colloidal chitin agar after 20-25 d. On the same conditions, wild type strain did not show this phenotype. In addition, the MUT23 strain produced the same normal hypha as the wild type strain when it was grown on colloidal chitin agar. The MUT23 was also able to produce more spores on colloidal chitin agar than on malt-yeast extract and minimal media. The parasite germ tubes formed appressoria at the point of contact on the cell surface of wild type and MUT23 grown for 6 days cell surface but not on the cel surface of MUT23 grown for 2 days. Thus, interaction between MUT23 strain and the mycoparasite was dependent on MUT23 age. The effect of MUT23 filtrate on germination of the parasite was tested. Lysis of germinated spores of the parasite were observed in concentrated MUT23 filtered solution. MUT23 was compared to the wild type strain for their chitinase production in sUbmerged culture. The chitinase isozymes of both wild type and MUT23 were shown by immunoblotting. Eight distinct chitinase molecules were detected. MUT23 showed markedly higher chitinase activity than the wild type cultured in chitin-containing medium. Maximum chitinase activities of MUT23 were 13.5 fold higher at 20 day of the culture then that of wild type.
Resumo:
Recombinant Adenoviruses (Ads) have been shown to have potential applications in three areas: gene therapy, high level protein expression and recombinant vaccines.' At least three different locations within the Ad genome can be deleted and subsequently used for the insertion of foreign sequences. These include the Early 3 (E3), Early 1 (E1) and Early 4 (E4) regions. Viral vectors of this type have been well studied in Human Ads 2 and 5, however one has not yet been constructed for Bovine Adenovirus Type 2 (BAV2). The E3 region is located between 76.6 and 86 m.u. on the r-strand and is transcribed in a rightward direction. The gene products of the Early 3 region (E3) have been shown to be non-essential for viral replication, in vitro, but are required for host immunosurveillance. This study represents the cloning and reconstitution of a BAV2 E3 deletion mutant. A deletion of 1800bp was made within the E3 region of BAV2 and the thymidine kinase gene was subsequently inserted in the deleted area . . The plasmid pdlE3-4tk1 (23.4Kbp) was constructed and used to to facilitate homologous recombination with the wild type BAV2 to produce a mutant. Southern Blotting and Hybridization results suggest the presence of a BAV2 E3 deletion mutant with thymidine kinase sequences present. The E4 region of Human Adenovirus types 2 and 5 is located at the extreme right end of the genome (91.3 map units - 99.1 map units) and is transcribed in a leftward direction giving rise to a complicated set of differentially spliced mRNAs. Essentially there are 7 open reading frames (ORFs) encoding for at least 7 polypeptides. The gene products encoded by the E4 region have been shown to be essential for the expression of late viral genes, host cell shutoff and normal viral growth. We have cloned and sequenced the right end segment between 90.5 map units and 100 map units of the BAV2 genome. The results show several open reading frames which encode polypeptides exhibiting homology to three polypeptides encoded by the E4 region of human adenovirus type 2. These include the 14kDa protein encoded by ORF1, the 34kDa protein encoded by ORF6 and the 13kDa protein encoded by ORF3. The nucleotide sequence, restriction enzyme map, and ORF map of the E4 region could be very useful in future molecular manipulation of this region and could possibly explain the slow growth rate of BAV2 in MDBK cells.
Resumo:
ABSTRACT Photosynthetic state transitions were investigated in the cyanobacterium Synechococcus sp. PCC 7002 in both wild-type cells and mutant cells lacking phycobilisomes. Preillumination in the presence of DCMU (3(3,4 dichlorophenyl) 1,1 dimethyl urea) induced state 1 and dark adaptation induced state 2 in both wild-type and mutant cells as determined by 77K fluorescence emission spectroscopy. Light-induced transitions were observed in the wildtype after preferential excitation of phycocyanin (state 2) or preferential excitation of chlorophyll .a. (state 1). The state 1 and 2 transitions in the wild-type had half-times of approximately 10 seconds. Cytochrome f and P-700 oxidation kinetics could not be correlated with any current state transition model as cells in state 1 showed faster oxidation kinetics regardless of excitation wavelength. Light-induced transitions were also observed in the phycobilisomeless mutant after preferential excitation of short wavelength chlorophyll !l. (state 2) or carotenoids and long wavelength chlorophyll it (state 1). One-dimensional electrophoresis revealed no significant differences in phosphorylation patterns of resolved proteins between wild-type cells in state 1 and state 2. It is concluded that the mechanism of the light state transition in cyanobacteria does not require the presence of the phycobilisome. The results contradict proposed models for the state transition which require an active role for the phycobilisome.
Resumo:
The Madagascar periwinkle [Catharanthus roseus (L.) G. Don] is a commercially important horticultural flower species and is the only source for several pharmaceutically valuable monoterpenoid indole alkaloids (MIAs), including the powerful antihypertensive ajmalicine and the antineoplastic agents vincristine and vinblastine. While biosynthesis of MIA precursors has been elucidated, conversion of the common MIA precursor strictosidine to MIAs of different families, for example ajmalicine, catharanthine or vindoline, remains uncharacterized. Deglycosylation of strictosidine by the key enzyme Strictosidine beta-glucosidase (SGD) leads to a pool of uncharacterized reaction products that are diverted into the different MIA families, but the downstream reactions are uncharacterized. Screening of 3600 EMS (ethyl methane sulfonate) mutagenized C. roseus plants to identify mutants with altered MIA profiles yielded one plant with high ajmalicine, and low catharanthine and vindoline content. RNA sequencing and comparative bioinformatics of mutant and wildtype plants showed up-regulation of SGD and the transcriptional repressor Zinc finger Catharanthus transcription factor (ZCT1) in the mutant line. The increased SGD activity in mutants seems to yield a larger pool of uncharacterized SGD reaction products that are channeled away from catharanthine and vindoline towards biosynthesis of ajmalicine when compared to the wildtype. Further bioinformatic analyses, and crossings between mutant and wildtype suggest a transcription factor upstream of SGD and ZCT1 to be mutated, leading to up-regulation of Sgd and Zct1. The crossing experiments further show that biosynthesis of the different MIA families is differentially regulated and highly complex. Three new transcription factors were identified by bioinformatics that seem to be involved in the regulation of Zct1 and Sgd expression, leading to the high ajmalicine phenotype. Increased cathenamine reductase activity in the mutant converts the pool of SGD reaction products into ajmalicine and its stereoisomer tetrahydroalstonine. The stereochemistry of ajmalicine and tetrahydroalstonine biosynthesis in vivo and in vitro was further characterized. In addition, a new clade of perakine reductase-like enzymes was identified that reduces the SGD reaction product vallesiachotamine in a stereo-specific manner, characterizing one of the many reactions immediately downstream of SGD that determine the different MIA families. This study establishes that RNA sequencing and comparative bioinformatics, in combination with molecular and biochemical characterization, are valuable tools to determine the genetic basis for mutations that trigger phenotypes, and this approach can also be used for identification of new enzymes and transcription factors.
Chemical, biochemical, and molecular characterization of a low vindoline Catharanthus roseus mutant.
Resumo:
The Madagascar periwinkle (Catharanthus roseus) is the sole source of the anticancer drug vinblastine, which is formed via the coupling of monoterpenoid indole alkaloids (MIAs) catharanthine and vindoline. A mutant line of C. roseus (M2-1865) with an altered MIA profile was identified in a screen of 4000 M2 lines generated by ethylmethanesulfonate (EMS) chemical mutagenesis. While this line did not accumulate vinblastine due to reduced levels of vindoline within the leaves, significant levels of 2,3-epoxide derivatives of tabersonine accumulated on the leaf surface. Detailed nucleotide, amino acid, and enzyme activity analyses of tabersonine 3-reductase in the M2-1865 line showed that a single amino acid substitution (H189Y) diminished the biochemical activity of T3R by 95%. Genetic crosses showed the phenotype to be recessive, exhibiting standard Mendelian single-gene inheritance. The usefulness of EMS mutagenesis in elucidating MIA biosynthesis is highlighted by the results of this study.
Resumo:
Dans les cellules eucaryotes, le trafic intracellulaire de nombreuses protéines est assuré par des vésicules de transport tapissées de clathrine. Les complexes adaptateurs de clathrine (AP) sont responsables de l’assemblage de ces vésicules et de la sélection des protéines qui seront transportées. Nous avons étudié cinq familles atteintes du syndrome neurocutané MEDNIK qui est caractérisé par un retard mental, une entéropathie, une surdité, une neuropathie périphérique, de l’icthyose et de la kératodermie. Tous les cas connus de cette maladie à transmission autosomique récessive sont originaires de la région de Kamouraska, dans la province de Québec. Par séquençage direct des gènes candidats, nous avons identifié une mutation impliquant le site accepteur de l’épissage de l’intron 2 du gène codant pour la sous-unité σ1 du complexe AP1 (AP1S1). Cette mutation fondatrice a été retrouvée chez tous les individus atteints du syndrome MEDNIK et altère l’épissage normal du gène, menant à un codon stop prématuré. Afin de valider l’effet pathogène de la mutation, nous avons bloqué la traduction de cette protéine chez le poisson zébré en injectant une séquence d’oligonucléotides antisenses spécifique à AP1S1. À 48 heures après la fertilisation, les larves knock down pour AP1S1 montrent une réduction de la pigmentation, une désorganisation de la structure de l’épiderme et une perturbation du développement moteur. Alors que la surexpression de l’AP1S1 humain dans ce modèle a permis la récupération du phénotype normal, l’expression de l’AP1S1 mutant fut sans effet sur les phénotypes moteurs et cutanés des larves knock down. Les résultats obtenus montrent que la mutation du AP1S1 responsable du syndrome de MEDNIK est associée à une perte de fonction et que la sous-unité σ1 du complexe AP1 joue un rôle crucial dans l’organisation de l’épiderme et le développement de la moelle épinière.