917 resultados para nonlinear propagation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many optical networks are limited in speed and processing capability due to the necessity for the optical signal to be converted to an electrical signal and back again. In addition, electronically manipulated interconnects in an otherwise optical network lead to overly complicated systems. Optical spatial solitons are optical beams that propagate without spatial divergence. They are capable of phase dependent interactions, and have therefore been extensively researched as suitable all optical interconnects for over 20 years. However, they require additional external components, initially high voltage power sources were required, several years later, high power background illumination had replaced the high voltage. However, these additional components have always remained as the greatest hurdle in realising the applications of the interactions of spatial optical solitons as all optical interconnects. Recently however, self-focusing was observed in an otherwise self-defocusing photorefractive crystal. This observation raises the possibility of the formation of soliton-like fields in unbiased self-defocusing media, without the need for an applied electrical field or background illumination. This thesis will present an examination of the possibility of the formation of soliton-like low divergence fields in unbiased self-defocusing photorefractive media. The optimal incident beam and photorefractive media parameters for the formation of these fields will be presented, together with an analytical and numerical study of the effect of these parameters. In addition, preliminary examination of the interactions of two of these fields will be presented. In order to complete an analytical examination of the field propagating through the photorefractive medium, the spatial profile of the beam after propagation through the medium was determined. For a low power solution, it was found that an incident Gaussian field maintains its Gaussian profile as it propagates. This allowed the beam at all times to be described by an individual complex beam parameter, while also allowing simple analytical solutions to the appropriate wave equation. An analytical model was developed to describe the effect of the photorefractive medium on the Gaussian beam. Using this model, expressions for the required intensity dependent change in both the real and imaginary components of the refractive index were found. Numerical investigation showed that under certain conditions, a low powered Gaussian field could propagate in self-defocusing photorefractive media with divergence of approximately 0.1 % per metre. An investigation into the parameters of a Ce:BaTiO3 crystal showed that the intensity dependent absorption is wavelength dependent, and can in fact transition to intensity dependent transparency. Thus, with careful wavelength selection, the required intensity dependent change in both the real and imaginary components of the refractive index for the formation of a low divergence Gaussian field are physically realisable. A theoretical model incorporating the dependence of the change in real and imaginary components of the refractive index on propagation distance was developed. Analytical and numerical results from this model are congruent with the results from the previous model, showing low divergence fields with divergence less than 0.003 % over the propagation length of the photorefractive medium. In addition, this approach also confirmed the previously mentioned self-focusing effect of the self-defocusing media, and provided an analogy to a negative index GRIN lens with an intensity dependent focal length. Experimental results supported the findings of the numerical analysis. Two low divergence fields were found to possess the ability to interact in a Ce:BaTiO3 crystal in a soliton-like fashion. The strength of these interactions was found to be dependent on the degree of divergence of the individual beams. This research found that low-divergence fields are possible in unbiased self-defocusing photorefractive media, and that soliton-like interactions between two of these fields are possible. However, in order for these types of fields to be used in future all optical interconnects, the manipulation of these interactions, together with the ability for these fields to guide a second beam at a different wavelength, must be investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streamciphers are common cryptographic algorithms used to protect the confidentiality of frame-based communications like mobile phone conversations and Internet traffic. Streamciphers are ideal cryptographic algorithms to encrypt these types of traffic as they have the potential to encrypt them quickly and securely, and have low error propagation. The main objective of this thesis is to determine whether structural features of keystream generators affect the security provided by stream ciphers.These structural features pertain to the state-update and output functions used in keystream generators. Using linear sequences as keystream to encrypt messages is known to be insecure. Modern keystream generators use nonlinear sequences as keystream.The nonlinearity can be introduced through a keystream generator's state-update function, output function, or both. The first contribution of this thesis relates to nonlinear sequences produced by the well-known Trivium stream cipher. Trivium is one of the stream ciphers selected in a final portfolio resulting from a multi-year project in Europe called the ecrypt project. Trivium's structural simplicity makes it a popular cipher to cryptanalyse, but to date, there are no attacks in the public literature which are faster than exhaustive keysearch. Algebraic analyses are performed on the Trivium stream cipher, which uses a nonlinear state-update and linear output function to produce keystream. Two algebraic investigations are performed: an examination of the sliding property in the initialisation process and algebraic analyses of Trivium-like streamciphers using a combination of the algebraic techniques previously applied separately by Berbain et al. and Raddum. For certain iterations of Trivium's state-update function, we examine the sets of slid pairs, looking particularly to form chains of slid pairs. No chains exist for a small number of iterations.This has implications for the period of keystreams produced by Trivium. Secondly, using our combination of the methods of Berbain et al. and Raddum, we analysed Trivium-like ciphers and improved on previous on previous analysis with regards to forming systems of equations on these ciphers. Using these new systems of equations, we were able to successfully recover the initial state of Bivium-A.The attack complexity for Bivium-B and Trivium were, however, worse than exhaustive keysearch. We also show that the selection of stages which are used as input to the output function and the size of registers which are used in the construction of the system of equations affect the success of the attack. The second contribution of this thesis is the examination of state convergence. State convergence is an undesirable characteristic in keystream generators for stream ciphers, as it implies that the effective session key size of the stream cipher is smaller than the designers intended. We identify methods which can be used to detect state convergence. As a case study, theMixer streamcipher, which uses nonlinear state-update and output functions to produce keystream, is analysed. Mixer is found to suffer from state convergence as the state-update function used in its initialisation process is not one-to-one. A discussion of several other streamciphers which are known to suffer from state convergence is given. From our analysis of these stream ciphers, three mechanisms which can cause state convergence are identified.The effect state convergence can have on stream cipher cryptanalysis is examined. We show that state convergence can have a positive effect if the goal of the attacker is to recover the initial state of the keystream generator. The third contribution of this thesis is the examination of the distributions of bit patterns in the sequences produced by nonlinear filter generators (NLFGs) and linearly filtered nonlinear feedback shift registers. We show that the selection of stages used as input to a keystream generator's output function can affect the distribution of bit patterns in sequences produced by these keystreamgenerators, and that the effect differs for nonlinear filter generators and linearly filtered nonlinear feedback shift registers. In the case of NLFGs, the keystream sequences produced when the output functions take inputs from consecutive register stages are less uniform than sequences produced by NLFGs whose output functions take inputs from unevenly spaced register stages. The opposite is true for keystream sequences produced by linearly filtered nonlinear feedback shift registers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of a study on the influence of the nonparabolicity of the free carriers dispersion law on the propagation of surface polaritons (SPs) located near the interface between an n-type semiconductor and a metal arc reported. The semiconductor plasma is assumed to be warm and nonisothermal. The nonparabolicity of the electron dispersion law has two effects. The first one is associated with nonlinear self-interaction of the SPs. The nonlinear dispersion equation and the nonlinear Schrodinger equation for the amplitude of the SP envelope are obtained. The nonlinear evolution of the SP is studied on the base of the above mentioned equations. The second effect results in third harmonics generation. Analysis shows that these third harmonics may appear as a pure surface polariton, a pseudosurface polariton, or a superposition of a volume wave and a SP depending on the wave frequency, electron density and lattice dielectric constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In approximation of weak heating influence of electron heating in the high-frequency surface wave field on propagation of surface wave (heating nonlinearity) is considered. It is shown that high-frequency surface wave propagates in direction perpendicular to the external magnetic field at the semiconductor-metal interface. A nonlinear dispersion equation is obtained and studied that allows to make conclusions about the contribution of heating nonlinearity to nonlinear process of considered interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the theoretical studies of nonlinear interactions of azimuthal surface waves (ASW) in cylindrical metal waveguides fully filled by a uniform magnetoactive plasma. These surface-type wave perturbations propagate in azimuthal direction across an external magnetic field, which is directed along the waveguide axis. The ASW is a relatively new kind of surface waves and so far the nonlinear effects associated with their propagation are outside the scope of scientific issues. They are characterized by a discrete set of mode numbers values which define the ASW eigenfrequencies. This fact leads to several peculiarities of ASW compared with ordinary surface-type waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the kinematics of a weak shock front governed by a hyperbolic system of conservation laws is studied. This is used to develop a method for solving problems, involving the propagation of nonlinear unimodal waves. It consists of first solving the nonlinear wave problem by moving along the bicharacteristics of the system and then fitting the shock into this solution field, so that it satisfies the necessary jump conditions. The kinematics of the shock leads in a natural way to the definition of ldquoshock-raysrdquo, which play the same role as the ldquoraysrdquo in a continuous flow. A special case of a circular cylinder introduced suddenly in a constant streaming flow is studied in detail. The shock fitted in the upstream region propagates with a velocity which is the mean of the velocities of the linear and the nonlinear wave fronts. In the downstream the solution is given by an expansion wave.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic derivation of the approximate coupled amplitude equations governing the propagation of a quasi-monochromatic Rayleigh surface wave on an isotropic solid is presented, starting from the non-linear governing differential equations and the non-linear free-surface boundary conditions, using the method of mulitple scales. An explicit solution of these equations for a signalling problem is obtained in terms of hyperbolic functions. In the case of monochromatic excitation, it is shown that the second harmonic amplitude grows initially at the expense of the fundamental and that the amplitudes of the fundamental and second harmonic remain bounded for all time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between large deflections, rotation effects and unsteady aerodynamics makes the dynamic analysis of rotating and flapping wing a nonlinear aeroelastic problem. This problem is governed by nonlinear periodic partial differential equations whose solution is needed to calculate the response and loads acting on vehicles using rotary or flapping wings for lift generation. We look at three important problems in this paper. The first problem shows the effect of nonlinear phenomenon coming from piezoelectric actuators used for helicopter vibration control. The second problem looks at the propagation on material uncertainty on the nonlinear response, vibration and aeroelastic stability of a composite helicopter rotor. The third problem considers the use of piezoelectric actuators for generating large motions in a dragonfly inspired flapping wing. These problems provide interesting insights into nonlinear aeroelasticity and show the likelihood of surprising phenomenon which needs to be considered during the design of rotary and flapping wing vehicle

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication K. R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R-3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 x 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A class of self-propagating linear and nonlinear travelling wave solutions for compressible rotating fluid is studied using both numerical and analytical techiques. It is shown that, in general, a three dimensional linear wave is not periodic. However, for some range of wave numbers depending on rotation, horizontally propagating waves are periodic. When the rotation ohgr is equal to $$\sqrt {(\gamma - 1)/(4\gamma )}$$ , all horizontal waves are periodic. Here, gamma is the ratio of specific heats. The analytical study is based on phase space analysis. It reveals that the quasi-simple waves are periodic only in some plane, even when the propagation is horizontal, in contrast to the case of non-rotating flows for which there is a single parameter family of periodic solutions provided the waves propagate horizontally. A classification of the singular points of the governing differential equations for quasi-simple waves is also appended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our investigations in this paper are centred around the mathematical analysis of a ldquomodal waverdquo problem. We have considered the axisymmetric flow of an inviscid liquid in a thinwalled viscoelastic tube under certain simplifying assumptions. We have first derived the propagation space equations in the long wave limit and also given a general procedure to derive these equations for arbitrary wave length, when the flow is irrotational. We have used the method of operators of multiple scales to derive the nonlinear Schrödinger equation governing the modulation of periodic waves and we have elaborated on the ldquolong modulated wavesrdquo and the ldquomodulated long wavesrdquo. We have also examined the existence and stability of Stokes waves in this system. This is followed by a discussion of the progressive wave solutions of the long wave equations. One of the most important results of our paper is that the propagation space equations are no longer partial differential equations but they are in terms of pseudo-differential operators.Die vorliegenden Untersuchungen beziehen sich auf die mathematische Behandlung des ldquorModalwellenrdquo-Problems. Die achsensymmetrische Strömung einer nichtviskosen Flüssigkeit in einem dünnwandigen viskoelastischen Rohr, unter bestimmten vereinfachenden Annahmen, wird betrachtet. Zuerst werden die Gleichungen des Ausbreitungsraumes im Langwellenbereich abgeleitet und eine allgemeine Methode zur Herleitung dieser Gleichungen für beliebige Wellenlängen bei nichtrotierender Strömung angegeben. Eine Operatorenmethode mit multiplem Maßstab wird verwendet zur Herleitung der nichtlinearen Schrödinger-Gleichung für die Modulation der periodischen Wellen, und die ldquorlangmodulierten Wellenrdquo sowie die ldquormodulierten Langwellenrdquo werden aufgezeigt. Weiters wird die Existenz und die Stabilität der Stokes-Wellen im System untersucht. Anschließend werden die progressiven Wellenlösungen der Langwellengleichungen diskutiert. Eines der wichtigsten Ergebnisse dieser Arbeit ist, daß die Gleichungen des Ausbreitungsraumes keine partiellen Differentialgleichungen mehr sind, sondern Ausdrücke von Pseudo-Differentialoperatoren.