866 resultados para non-trivial data structures
Resumo:
The main theme of this thesis is to allow the users of cloud services to outsource their data without the need to trust the cloud provider. The method is based on combining existing proof-of-storage schemes with distance-bounding protocols. Specifically, cloud customers will be able to verify the confidentiality, integrity, availability, fairness (or mutual non-repudiation), data freshness, geographic assurance and replication of their stored data directly, without having to rely on the word of the cloud provider.
Resumo:
In many applications, where encrypted traffic flows from an open (public) domain to a protected (private) domain, there exists a gateway that bridges the two domains and faithfully forwards the incoming traffic to the receiver. We observe that indistinguishability against (adaptive) chosen-ciphertext attacks (IND-CCA), which is a mandatory goal in face of active attacks in a public domain, can be essentially relaxed to indistinguishability against chosen-plaintext attacks (IND-CPA) for ciphertexts once they pass the gateway that acts as an IND-CCA/CPA filter by first checking the validity of an incoming IND-CCA ciphertext, then transforming it (if valid) into an IND-CPA ciphertext, and forwarding the latter to the recipient in the private domain. “Non-trivial filtering'' can result in reduced decryption costs on the receivers' side. We identify a class of encryption schemes with publicly verifiable ciphertexts that admit generic constructions of (non-trivial) IND-CCA/CPA filters. These schemes are characterized by existence of public algorithms that can distinguish between valid and invalid ciphertexts. To this end, we formally define (non-trivial) public verifiability of ciphertexts for general encryption schemes, key encapsulation mechanisms, and hybrid encryption schemes, encompassing public-key, identity-based, and tag-based encryption flavours. We further analyze the security impact of public verifiability and discuss generic transformations and concrete constructions that enjoy this property.
Resumo:
Samples of sea water contain phytoplankton taxa in varying amounts, and marine scientists are interested in the relative abundance of each taxa. Their relative biomass can be ascertained indirectly by measuring the quantity of various pigments using high performance liquid chromatography. However, the conversion from pigment to taxa is mathematically non trivial as it is a positive matrix factorisation problem where both matrices are unknown beyond the level of initial estimates. The prior information on the pigment to taxa conversion matrix is used to give the problem a unique solution. An iteration of two non-negative least squares algorithms gives satisfactory results. Some sample analysis of data indicates prospects for this type of analysis. An alternative more computationally intensive approach using Bayesian methods is discussed.
Resumo:
We analyse the security of the cryptographic hash function LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By exploiting non-injectivity of some of the building primitives of LAKE, we show three different collision and near-collision attacks on the compression function. The first attack uses differences in the chaining values and the block counter and finds collisions with complexity 233. The second attack utilizes differences in the chaining values and salt and yields collisions with complexity 242. The final attack uses differences only in the chaining values to yield near-collisions with complexity 299. All our attacks are independent of the number of rounds in the compression function. We illustrate the first two attacks by showing examples of collisions and near-collisions.
Resumo:
Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.
Resumo:
Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.
Resumo:
Despite being used since 1976, Delusions-Symptoms-States-Inventory/states of Anxiety and Depression (DSSI/sAD) has not yet been validated for use among people with diabetes. The aim of this study was to examine the validity of the personal disturbance scale (DSSI/sAD) among women with diabetes using Mater-University of Queensland Study of Pregnancy (MUSP) cohort data. The DSSI subscales were compared against DSM-IV disorders, the Mental Component Score of the Short Form 36 (SF-36 MCS), and Center for Epidemiologic Studies Depression Scale (CES-D). Factor analyses, odds ratios, receiver operating characteristic (ROC) analyses and diagnostic efficiency tests were used to report findings. Exploratory factor analysis and fit indices confirmed the hypothesized two-factor model of DSSI/sAD. We found significant variations in the DSSI/sAD domain scores that could be explained by CES-D (DSSI-Anxiety: 55%, DSSI-Depression: 46%) and SF-36 MCS (DSSI-Anxiety: 66%, DSSI-Depression: 56%). The DSSI subscales predicted DSM-IV diagnosed depression and anxiety disorders. The ROC analyses show that although the DSSI symptoms and DSM-IV disorders were measured concurrently the estimates of concordance remained only moderate. The findings demonstrate that the DSSI/sAD items have similar relationships to one another in both the diabetes and non-diabetes data sets which therefore suggest that they have similar interpretations.
Resumo:
The most important aspect of modelling a geological variable, such as metal grade, is the spatial correlation. Spatial correlation describes the relationship between realisations of a geological variable sampled at different locations. Any method for spatially modelling such a variable should be capable of accurately estimating the true spatial correlation. Conventional kriged models are the most commonly used in mining for estimating grade or other variables at unsampled locations, and these models use the variogram or covariance function to model the spatial correlations in the process of estimation. However, this usage assumes the relationships of the observations of the variable of interest at nearby locations are only influenced by the vector distance between the locations. This means that these models assume linear spatial correlation of grade. In reality, the relationship with an observation of grade at a nearby location may be influenced by both distance between the locations and the value of the observations (ie non-linear spatial correlation, such as may exist for variables of interest in geometallurgy). Hence this may lead to inaccurate estimation of the ore reserve if a kriged model is used for estimating grade of unsampled locations when nonlinear spatial correlation is present. Copula-based methods, which are widely used in financial and actuarial modelling to quantify the non-linear dependence structures, may offer a solution. This method was introduced by Bárdossy and Li (2008) to geostatistical modelling to quantify the non-linear spatial dependence structure in a groundwater quality measurement network. Their copula-based spatial modelling is applied in this research paper to estimate the grade of 3D blocks. Furthermore, real-world mining data is used to validate this model. These copula-based grade estimates are compared with the results of conventional ordinary and lognormal kriging to present the reliability of this method.
Resumo:
This poster presents key features of how QUT’s integrated research data storage and management services work with researchers through their own individual or team research life cycle. By understanding the characteristics of research data, and the long-term need to store this data, QUT has provided resources and tools that support QUT’s goal of being a research intensive institute. Key to successful delivery and operation has been the focus upon researchers’ individual needs and the collaboration between providers, in particular, Information Technology Services, High Performance Computing and Research Support, and QUT Library. QUT’s Research Data Storage service provides all QUT researchers (staff and Higher Degree Research students (HDRs)) with a secure data repository throughout the research data lifecycle. Three distinct storage areas provide for raw research data to be acquired, project data to be worked on, and published data to be archived. Since the service was launched in late 2014, it has provided research project teams from all QUT faculties with acquisition, working or archival data space. Feedback indicates that the storage suits the unique needs of researchers and their data. As part of the workflow to establish storage space for researchers, Research Support Specialists and Research Data Librarians consult with researchers and HDRs to identify data storage requirements for projects and individual researchers, and to select and implement the most suitable data storage services and facilities. While research can be a journey into the unknown[1], a plan can help navigate through the uncertainty. Intertwined in the storage provision is QUT’s Research Data Management Planning tool. Launched in March 2015, it has already attracted 273 QUT staff and 352 HDR student registrations, and over 620 plans have been created (2/10/2015). Developed in collaboration with Office of Research Ethics and Integrity (OREI), uptake of the plan has exceeded expectations.
Resumo:
A variety of data structures such as inverted file, multi-lists, quad tree, k-d tree, range tree, polygon tree, quintary tree, multidimensional tries, segment tree, doubly chained tree, the grid file, d-fold tree. super B-tree, Multiple Attribute Tree (MAT), etc. have been studied for multidimensional searching and related problems. Physical data base organization, which is an important application of multidimensional searching, is traditionally and mostly handled by employing inverted file. This study proposes MAT data structure for bibliographic file systems, by illustrating the superiority of MAT data structure over inverted file. Both the methods are compared in terms of preprocessing, storage and query costs. Worst-case complexity analysis of both the methods, for a partial match query, is carried out in two cases: (a) when directory resides in main memory, (b) when directory resides in secondary memory. In both cases, MAT data structure is shown to be more efficient than the inverted file method. Arguments are given to illustrate the superiority of MAT data structure in an average case also. An efficient adaptation of MAT data structure, that exploits the special features of MAT structure and bibliographic files, is proposed for bibliographic file systems. In this adaptation, suitable techniques for fixing and ranking of the attributes for MAT data structure are proposed. Conclusions and proposals for future research are presented.
Resumo:
We study the secondary structure of RNA determined by Watson-Crick pairing without pseudo-knots using Milnor invariants of links. We focus on the first non-trivial invariant, which we call the Heisenber invariant. The Heisenberg invariant, which is an integer, can be interpreted in terms of the Heisenberg group as well as in terms of lattice paths. We show that the Heisenberg invariant gives a lower bound on the number of unpaired bases in an RNA secondary structure. We also show that the Heisenberg invariant can predict allosteric structures for RNA. Namely, if the Heisenberg invariant is large, then there are widely separated local maxima (i.e., allosteric structures) for the number of Watson-Crick pairs found.
Resumo:
Recovering the motion of a non-rigid body from a set of monocular images permits the analysis of dynamic scenes in uncontrolled environments. However, the extension of factorisation algorithms for rigid structure from motion to the low-rank non-rigid case has proved challenging. This stems from the comparatively hard problem of finding a linear “corrective transform” which recovers the projection and structure matrices from an ambiguous factorisation. We elucidate that this greater difficulty is due to the need to find multiple solutions to a non-trivial problem, casting a number of previous approaches as alleviating this issue by either a) introducing constraints on the basis, making the problems nonidentical, or b) incorporating heuristics to encourage a diverse set of solutions, making the problems inter-dependent. While it has previously been recognised that finding a single solution to this problem is sufficient to estimate cameras, we show that it is possible to bootstrap this partial solution to find the complete transform in closed-form. However, we acknowledge that our method minimises an algebraic error and is thus inherently sensitive to deviation from the low-rank model. We compare our closed-form solution for non-rigid structure with known cameras to the closed-form solution of Dai et al. [1], which we find to produce only coplanar reconstructions. We therefore make the recommendation that 3D reconstruction error always be measured relative to a trivial reconstruction such as a planar one.
Resumo:
The existing internet computing resource, Biomolecules Segment Display Device (BSDD), has been updated with several additional useful features. An advanced option is provided to superpose the structural motifs obtained from a search on the Protein Data Bank (PDB) in order to see if the three-dimensional structures adopted by identical or similar sequence motifs are the same. Furthermore, the options to display structural aspects like inter- and intra-molecular interactions, ion-pairs, disulphide bonds, etc. have been provided.The updated resource is interfaced with an up-to-date copy of the public domain PDB as well as 25 and 90% non-redundant protein structures. Further, users can upload the three-dimensional atomic coordinates (PDB format) from the client machine. A free molecular graphics program, JMol, is interfaced with it to display the three-dimensional structures.
Resumo:
A generalization of the isotropic theory of Batchelor & Proudman (1954) is developed to estimate the effect of sudden but arbitrary three-dimensional distortion on homogeneous, initially axisymmetric turbulence. The energy changes due to distortion are expressed in terms of the Fourier coefficients of an expansion in zonal harmonics of the two independent scalar functions that describe the axisymmetric spectral tensor. However, for two special but non-trivial forms of this tensor, which represent possibly the simplest kinds of non-isotropic turbulence and specify the angular distribution but not the wavenumber dependence, the energy ratios have been determined in closed form. The deviation of the ratio from its isotropic value is the product of a factor containing R, the initial value of the ratio of the longitudinal to the transverse energy component, and another factor depending only on the geometry of the distortion. It is found that, in axisymmetric and large two-dimensional contractions, the isotropic theory gives nearly the correct longitudinal energy, but (when R > 1) over-estimates the increase in the transverse energy; the product of the two intensities varies little unless the distortion is very large, thus accounting for the stress-freezing observed in rapidly accelerated shear flows.Comparisons with available experimental data for the spectra and for the energy ratios show reasonable agreement. The different ansatzes predict results in broad qualitative agreement with a simple strategem suggested by Reynolds & Tucker (1975), but the quantitative differences are not always negligible.
Resumo:
Dispersing a data object into a set of data shares is an elemental stage in distributed communication and storage systems. In comparison to data replication, data dispersal with redundancy saves space and bandwidth. Moreover, dispersing a data object to distinct communication links or storage sites limits adversarial access to whole data and tolerates loss of a part of data shares. Existing data dispersal schemes have been proposed mostly based on various mathematical transformations on the data which induce high computation overhead. This paper presents a novel data dispersal scheme where each part of a data object is replicated, without encoding, into a subset of data shares according to combinatorial design theory. Particularly, data parts are mapped to points and data shares are mapped to lines of a projective plane. Data parts are then distributed to data shares using the point and line incidence relations in the plane so that certain subsets of data shares collectively possess all data parts. The presented scheme incorporates combinatorial design theory with inseparability transformation to achieve secure data dispersal at reduced computation, communication and storage costs. Rigorous formal analysis and experimental study demonstrate significant cost-benefits of the presented scheme in comparison to existing methods.