956 resultados para non-native macrophytes
Resumo:
During mild heat-stress, a native thermolabile polypeptide may partially unfold and transiently expose water-avoiding hydrophobic segments that readily tend to associate into a stable misfolded species, rich in intra-molecular non-native beta-sheet structures. When the concentration of the heat-unfolded intermediates is elevated, the exposed hydrophobic segments tend to associate with other molecules into large stable insoluble complexes, also called "aggregates." In mammalian cells, stress- and mutation-induced protein misfolding and aggregation may cause degenerative diseases and aging. Young cells, however, effectively counteract toxic protein misfolding with a potent network of molecular chaperones that bind hydrophobic surfaces and actively unfold otherwise stable misfolded and aggregated polypeptides. Here, we followed the behavior of a purified, initially mostly native thermolabile luciferase mutant, in the presence or absence of the Escherichia coli DnaK-DnaJ-GrpE chaperones and/or of ATP, at 22 °C or under mild heat-stress. We concomitantly measured luciferase enzymatic activity, Thioflavin-T fluorescence, and light-scattering to assess the effects of temperature and chaperones on the formation, respectively, of native, unfolded, misfolded, and/or of aggregated species. During mild heat-denaturation, DnaK-DnaJ-GrpE+ATP best maintained, although transiently, high luciferase activity and best prevented heat-induced misfolding and aggregation. In contrast, the ATP-less DnaK and DnaJ did not maintain optimal luciferase activity and were less effective at preventing luciferase misfolding and aggregation. We present a model accounting for the experimental data, where native, unfolded, misfolded, and aggregated species spontaneously inter-convert, and in which DnaK-DnaJ-GrpE+ATP specifically convert stable misfolded species into unstable unfolded intermediates.
Resumo:
ABSTRACT: BACKGROUND: Local adaptation can drive the divergence of populations but identification of the traits under selection remains a major challenge in evolutionary biology. Reciprocal transplant experiments are ideal tests of local adaptation, yet rarely used for higher vertebrates because of the mobility and potential invasiveness of non-native organisms. Here, we reciprocally transplanted 2500 brown trout (Salmo trutta) embryos from five populations to investigate local adaptation in early life history traits. Embryos were bred in a full-factorial design and raised in natural riverbeds until emergence. Customized egg capsules were used to simulate the natural redd environment and allowed tracking the fate of every individual until retrieval. We predicted that 1) within sites, native populations would outperform non-natives, and 2) across sites, populations would show higher performance at 'home' compared to 'away' sites. RESULTS: There was no evidence for local adaptation but we found large differences in survival and hatching rates between sites, indicative of considerable variation in habitat quality. Survival was generally high across all populations (55% +/- 3%), but ranged from 4% to 89% between sites. Average hatching rate was 25% +/- 3% across populations ranging from 0% to 62% between sites. CONCLUSION: This study provides rare empirical data on variation in early life history traits in a population network of a salmonid, and large-scale breeding and transplantation experiments like ours provide powerful tests for local adaptation. Despite the recently reported genetic and morphological differences between the populations in our study area, local adaptation at the embryo level is small, non-existent, or confined to ecological conditions that our experiment could not capture.
Resumo:
Unlike other languages, English has spread to all continents and become a truly global language, a process observable in countries, like Brazil, Cape Verde, and Portugal, located in three different continents, and sharing a common official language: Portuguese. This relatively recent development has contributed to the wide exposure to English and the growing influence of the language in their societies, being used with lingua franca communicative purposes, which raises pedagogical issues. Our aim is to map the exposure and use of English as a Lingua Franca in these Portuguese speaking countries through a comparative study of the results from three case studies (Berto 2009, Cavalheiro 2008 and Nunes 2010). By taking into consideration the findings from questionnaires answered by students and teachers of English, it compares and contrasts the respondents’ opinions on the profile of English teachers — native vs. non-native —, the varieties of English to be taught, and the language teaching resources available. In addition, it explores the learners’ interests, motives and purposes in relation to English and the potential communicative interactions between all speakers, so as to better understand ELF in English language education, and how these factors affect or should affect pedagogical practices in a Portuguese environment.
Resumo:
betaTC-tet cells are conditionally immortalized pancreatic beta cells which can confer long-term correction of hyperglycemia when transplanted in syngeneic streptozocin diabetic mice. The use of these cells for control of type I diabetes in humans will require their encapsulation and transplantation in non-native sites where relative hypoxia and cytokines may threaten their survival. In this study we genetically engineered betaTC-tet cells with the anti-apoptotic gene Bcl-2 using new lentiviral vectors and showed that it protected this cell line against apoptosis induced by hypoxia, staurosporine and a mixture of cytokines (IL-1beta, IFN-gamma and TNF-alpha). We further demonstrated that Bcl-2 expression permitted growth at higher cell density and with shorter doubling time. Expression of Bcl-2, however, did not inter- fere either with the intrinsic mechanism of growth arrest present in the betaTC-tet cells or with their normal glucose dose-dependent insulin secretory activity. Furthermore, Bcl-2 expressing betaTC-tet cells retained their capacity to secrete insulin under mild hypoxia. Finally, transplantation of these cells under the kidney capsule of streptozocin diabetic C3H mice corrected hyperglycemia for several months. These results demonstrate that the murine betaTC-tet cell line can be genetically modified to improve its resistance against different stress-induced apoptosis while preserving its normal physiological function. These modified cells represent an improved source for cell transplantation therapy of type I diabetes.
Resumo:
Niche-based models calibrated in the native range by relating species observations to climatic variables are commonly used to predict the potential spatial extent of species' invasion. This climate matching approach relies on the assumption that invasive species conserve their climatic niche in the invaded ranges. We test this assumption by analysing the climatic niche spaces of Spotted Knapweed in western North America and Europe. We show with robust cross-continental data that a shift of the observed climatic niche occurred between native and non-native ranges, providing the first empirical evidence that an invasive species can occupy climatically distinct niche spaces following its introduction into a new area. The models fail to predict the current invaded distribution, but correctly predict areas of introduction. Climate matching is thus a useful approach to identify areas at risk of introduction and establishment of newly or not-yet-introduced neophytes, but may not predict the full extent of invasions.
Resumo:
Summary: When does a native speaker correct the grammar of a non-native speaker in conversation
Resumo:
Misfolded polypeptide monomers may be regarded as the initial species of many protein aggregation pathways, which could accordingly serve as primary targets for molecular chaperones. It is therefore of paramount importance to study the cellular mechanisms that can prevent misfolded monomers from entering the toxic aggregation pathway and moreover rehabilitate them into active proteins. Here, we produced two stable misfolded monomers of luciferase and rhodanese, which we found to be differently processed by the Hsp70 chaperone machinery and whose conformational properties were investigated by biophysical approaches. In spite of their monomeric nature, they displayed enhanced thioflavin T fluorescence, non-native β-sheets, and tertiary structures with surface-accessible hydrophobic patches, but differed in their conformational stability and aggregation propensity. Interestingly, minor structural differences between the two misfolded species could account for their markedly different behavior in chaperone-mediated unfolding/refolding assays. Indeed, only a single DnaK molecule was sufficient to unfold by direct clamping a misfolded luciferase monomer, while, by contrast, several DnaK molecules were necessary to unfold the more resistant misfolded rhodanese monomer by a combination of direct clamping and cooperative entropic pulling.
Resumo:
Garlic mustard is a rapidly spreading, highly invasive non-native plant. It was introduced from Europe in mid-1800 for medicinal and herbal uses. Came to the United States without predatory beetles or other natural controls. Threatens to rob us of healthy, diverse native woodlands.
Resumo:
The distribution and status of Iowa's fishes were last extensively described in Iowa Fish and Fishing (Harlan et al. 1987). Since then, numerous fish collections have been made in Iowa's interior and bordering rivers and streams. Excluding non-native species, there have been three documented accounts of new fish species distributional records in Iowa since 1987. In this paper, I describe new collections of Crystal Darter (Crystallaria asprella) and Bluntnose Darter (Etheostoma chlorosomum) from the Mississippi River. The first documented specimen of C. asprella in Iowa was collected in Pool 11 of the Upper Mississippi River (UMR) in 1995. One specimen of E. chlorosomum was collected in Pool 13 of the UMR in 1998, and another was collected in 1999. The bluntnose darter had not been collected since 1975 and was generally thought to be extirpated in Iowa.
Resumo:
Most studies of invasive species have been in highly modified, lowland environments, with comparatively little attention directed to less disturbed, high-elevation environments. However, increasing evidence indicates that plant invasions do occur in these environments, which often have high conservation value and provide important ecosystem services. Over a thousand non-native species have become established in natural areas at high elevations worldwide, and although many of these are not invasive, some may pose a considerable threat to native mountain ecosystems. Here, we discuss four main drivers that shape plant invasions into high-elevation habitats: (1) the (pre-)adaptation of non-native species to abiotic conditions, (2) natural and anthropogenic disturbances, (3) biotic resistance of the established communities, and (4) propagule pressure. We propose a comprehensive research agenda for tackling the problem of plant invasions into mountain ecosystems, including documentation of mountain invasion patterns at multiple scales, experimental studies, and an assessment of the impacts of non-native species in these systems. The threat posed to high-elevation biodiversity by invasive plant species is likely to increase because of globalization and climate change. However, the higher mountains harbor ecosystems where invasion by non-native species has scarcely begun, and where science and management have the opportunity to respond in time.
Resumo:
Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd2+, Hg2+ and Pb2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC(50) in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.
Resumo:
The Lost Island Lake watershed is located in the prairie pothole region, a region dotted with glacial wetlands and shallow lakes. At 1,180 acres, Lost Island Lake is the state's fifth largest natural lake and its watershed is comprised of nearly 1,000 acres of wetland habitat, including Iowa 's largest natural wetland – Barringer Slough. Unfortunately, Lost Island and its associated wetlands are not functioning to their fullest ecological and water quality potential. In 2002 and 2004, Lost Island Lake was categorized as '·impaired'" on Iowa's Impaired Waters List. Frequent algal blooms and suspended solids drastically increase turbidity levels resulting in its impairment. To investigate these concerns, a two-year study and resulting Water Quality Improvement Plan were completed. The water quality study identified an overabundance of non-native common carp (Cyprinus carpio) in the lake and its surrounding wetlands as a primary cause of impairment. The goal of the Lost Island Lake Watershed Enhancement Project is to restore ecological health to Lost Island Lake and its intricate watershed resulting in improved water quality and a diverse native plant and wildlife community. The purpose of this grant is to obtain funding for the construction of two combination fish barriers and water control structures placed at key locations in the watershed within the Blue Wing Marsh complex. Construction of the fish barriers and water control structures would aid restoration efforts by preventing spawning common carp from entering wetlands in the watershed and establishing the ability to manage water levels in large wetland areas. Water level management is crucial in wetland health and exotic fish control. These two structures are part of a larger construction project that involves a total of four combination fish barriers and water control structures and one additional fish barrier. The entire Lost Island Lake Watershed Enhancement Project is a multi-year project, but the construction phase for the fish barriers and water control structures will be completed before December 31, 2011.
Resumo:
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.
Resumo:
Además de presentar la interacción en el aula desde la perspectiva del trabajo en parejas alumno autóctono/no autóctono, nuestro objetivo en el presente apartado de este volumen es analizar los procesos interactivos que llevan a que una misma tarea escolar se resuelva de manera más o menos eficiente. Al mismo tiempo, contemplamos y comparamos en nuestro análisis la interacción que tiene lugar entre dos parejas de alumnos (alumna inmigrante/alumno autóctono) en la resolución de tareas escolares en lengua inglesa, prestando especial atención a cómo y en qué medida los interlocutores se orientan interactivamente hacia la identidad del alumno inmigrante.