998 resultados para nitrogen recycling
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.
Resumo:
Near-ripe ‘Kensington Pride’ mango (Mangifera indica L.) fruit with green skin colour generally return lower wholesale and retail prices. Pre-harvest management, especially nitrogen (N) nutrition, appears to be a major causal factor. To obtain an understanding of the extent of the problem in the Burdekin district (dry tropics; the major production area in Australia), green mature ‘Kensington Pride’ mango fruit were harvested from ten orchards and ripened at 20 ± 0.5 O C. Of these orchards, 70% produced fruit with more than 25% of the skin surface area green when ripe. The following year, the effect of N application on skin colour and other quality attributes was investigated on three orchards, one with a high green (HG) skin problem and two with a low green (LG) skin problem. N was applied at pre-flowering and at panicle emergence at the rate of 0,75,150,300 g per tree (soil applied) or 50 g per tree as foliar N for the HG orchard, and 0,150,300,450 g per tree (soil applied) or 50 g per tree (foliar) for the LG orchards. In all orchards the proportion of green colour on the ripe fruit was significantly (P<0.05) higher with soil applications of 150 g N or more per tree. Foliar sprays resulted in a higher proportion of green colour than the highest soil treatment in the HG orchard, but not in the LG orchards. Anthracnose disease severity was significantly (P<0.05) higher with 300 g of N per tree or foliar treatment in the HG orchard, compared with no additional N. Thus, N can reduce mango fruit quality by increasing green colour and anthracnose disease in ripe fruit.
Resumo:
Continuous cultivation and cereal cropping of southern Queensland soils previously supporting native vegetation have resulted in reduced soil nitrogen supply, and consequently decreased cereal grain yields and low grain protein. To enhance yields and protein concentrations of wheat, management practices involving N fertiliser application, with no-tillage and stubble retention, grain legumes, and legume leys were evaluated from 1987 to 1998 on a fertility-depleted Vertosol at Warra, southern Queensland. The objective of this study was to examine the effect of lucerne in a 2-year lucerne–wheat rotation for its nitrogen and disease-break benefits to subsequent grain yield and protein content of wheat as compared with continuous wheat cropping. Dry matter production and nitrogen yields of lucerne were closely correlated with the total rainfall for October–September as well as March–September rainfall. Each 100 mm of total rainfall resulted in 0.97 t/ha of dry matter and 26 kg/ha of nitrogen yield. For the March–September rainfall, the corresponding values were 1.26 t/ha of dry matter and 36 kg/ha of nitrogen yield. The latter values were 10% lower than those produced by annual medics during a similar period. Compared with wheat–wheat cropping, significant increases in total soil nitrogen were observed only in 1990, 1992 and 1994 but increases in soil mineralisable nitrogen were observed in most years following lucerne. Similarly, pre-plant nitrate nitrogen in the soil profile following lucerne was higher by 74 kg/ha (9–167 kg N/ha) than that of wheat–wheat without N fertiliser in all years except 1996. Consequently, higher wheat grain protein (7 out of 9 seasons) and grain yield (4 out of 9 seasons) were produced compared with continuous wheat. There was significant depression in grain yield in 2 (1993 and 1995) out of 9 seasons attributed to soil moisture depletion and/or low growing season rainfall. Consequently, the overall responses in yield were lower than those of 50 kg/ha of fertiliser nitrogen applied to wheat–wheat crops, 2-year medic–wheat or chickpea–wheat rotation, although grain protein concentrations were higher following lucerne. The incidence and severity of the soilborne disease, common root rot of wheat caused by Bipolaris sorokiniana, was generally higher in lucerne–wheat than in continuous wheat with no nitrogen fertiliser applications, since its severity was significantly correlated with plant available water at sowing. No significant incidence of crown rot or root lesion nematode was observed. Thus, productivity, which was mainly due to nitrogen accretion in this experiment, can be maintained where short duration lucerne leys are grown in rotations with wheat.
Resumo:
Soil nitrogen (N) supply in the Vertosols of southern Queensland, Australia has steadily declined as a result of long-term cereal cropping without N fertiliser application or rotations with legumes. Nitrogen-fixing legumes such as lucerne may enhance soil N supply and therefore could be used in lucerne-wheat rotations. However, lucerne leys in this subtropical environment can create a soil moisture deficit, which may persist for a number of seasons. Therefore, we evaluated the effect of varying the duration of a lucerne ley (for up to 4 years) on soil N increase, N supply to wheat, soil water changes, wheat yields and wheat protein on a fertility-depleted Vertosol in a field experiment between 1989 and 1996 at Warra (26degrees 47'S, 150degrees53'E), southern Queensland. The experiment consisted of a wheat-wheat rotation, and 8 treatments of lucerne leys starting in 1989 (phase 1) or 1990 (phase 2) for 1,2,3 or 4 years duration, followed by wheat cropping. Lucerne DM yield and N yield increased with increasing duration of lucerne leys. Soil N increased over time following 2 years of lucerne but there was no further significant increase after 3 or 4 years of lucerne ley. Soil nitrate concentrations increased significantly with all lucerne leys and moved progressively downward in the soil profile from 1992 to 1995. Soil water, especially at 0.9-1.2 m depth, remained significantly lower for the next 3 years after the termination of the 4 year lucerne ley than under continuous wheat. No significant increase in wheat yields was observed from 1992 to 1995, irrespective of the lucerne ley. However, wheat grain protein concentrations were significantly higher under lucerne-wheat than under wheat wheat rotations for 3-5 years. The lucerne yield and soil water and nitrate-N concentrations were satisfactorily simulated with the APSIM model. Although significant N accretion occurred in the soil following lucerne leys, in drier seasons, recharge of the drier soil profile following long duration lucerne occurred after 3 years. Consequently, 3- and 4-year lucerne-wheat rotations resulted in more variable wheat yields than wheat-wheat rotations in this region. The remaining challenge in using lucerne-wheat rotations is balancing the N accretion benefits with plant-available water deficits, which are most likely to occur in the highly variable rainfall conditions of this region.
Resumo:
Supplements containing urea or biuret were fed in the dry season to yearling and two year old pregnant heifers grazing native spear grass pastures in north Queensland. Liveweight change and survival during the dry season and fertility in the following year were measured. In the first experiment during a relatively favourable dry season, supplementation significantly (P<0.01) reduced liveweight loss in yearling heifers (5 vs. 32 kg). In the following year during a drought, supplement significantly (P<.01) reduced liveweight loss in yearling heifers (32 vs. 41 kg) and significantly (P <0.01) reduced mortalities (23.5% vs. 5.2%) in pregnant and lactating heifers. The supplement had no significant effect on subsequent fertility in either experiment. 14th Biennial Conference.
Resumo:
Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months (Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia's northern grains region. Cumulative net N mineralised from the long-term (30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (No) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of C02 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19-28% of applied organic C mineralised) than the WetPPS (35-58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R^2 = 0.96), although it was <60% of the latter in both sandy and clayey soils. Anaerobically mineralisable N determined by waterlogged incubation of laboratory PPS-amended soil samples increased with increasing application rate of Wet PPS. Anaerobically minemlisable N from field-moist soil was well correlated with net N mineralised during 30 weeks of aerobic leached incubation (R^2 =0.90 sandy soil; R^2=0.93 clay soil). In the clay soil, the amount of mineral N produced from all the laboratory incubations was significantly correlated with field-measured nitrate-N in the soil profile (0-1.5 m depth) after 9 months of weed-free fallow following PPS application. In contrast, only anaerobic mineralisable N was significantly correlated with field nitrate-N in the sandy soil. Anaerobic incubation would, therefore, be suitable as a rapid practical test to estimate potentially mineralisable N following applications of different PPS materials in the field.
Resumo:
Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.
Resumo:
Variable-rate technologies and site-specific crop nutrient management require real-time spatial information about the potential for response to in-season crop management interventions. Thermal and spectral properties of canopies can provide relevant information for non-destructive measurement of crop water and nitrogen stresses. In previous studies, foliage temperature was successfully estimated from canopy-scale (mixed foliage and soil) temperatures and the multispectral Canopy Chlorophyll Content Index (CCCI) was effective in measuring canopy-scale N status in rainfed wheat (Triticum aestivum L.) systems in Horsham, Victoria, Australia. In the present study, results showed that under irrigated wheat systems in Maricopa, Arizona, USA, the theoretical derivation of foliage temperature unmixing produced relationships similar to those in Horsham. Derivation of the CCCI led to an r2 relationship with chlorophyll a of 0.53 after Zadoks stage 43. This was later than the relationship (r2 = 0.68) developed for Horsham after Zadoks stage 33 but early enough to be used for potential mid-season N fertilizer recommendations. Additionally, ground-based hyperspectral data estimated plant N (g kg)1) in Horsham with an r2 = 0.86 but was confounded by water supply and N interactions. By combining canopy thermal and spectral properties, varying water and N status can potentially be identified eventually permitting targeted N applications to those parts of a field where N can be used most efficiently by the crop.
Resumo:
Quantitative information regarding nitrogen (N) accumulation and its distribution to leaves, stems and grains under varying environmental and growth conditions are limited for chickpea (Cicer arietinum L.). The information is required for the development of crop growth models and also for assessment of the contribution of chickpea to N balances in cropping systems. Accordingly, these processes were quantified in chickpea under different environmental and growth conditions (still without water or N deficit) using four field experiments and 1325 N measurements. N concentration ([N]) in green leaves was 50 mg g-1 up to beginning of seed growth, and then it declined linearly to 30 mg g-1 at the end of seed growth phase. [N] in senesced leaves was 12 mg g-1. Stem [N] decreased from 30 mg g-1 early in the season to 8 mg g-1 in senesced stems at maturity. Pod [N] was constant (35 mg g-1), but grain [N] decreased from 60 mg g-1 early in seed growth to 43 mg g-1 at maturity. Total N accumulation ranged between 9 and 30 g m-2. N accumulation was closely linked to biomass accumulation until maturity. N accumulation efficiency (N accumulation relative to biomass accumulation) was 0.033 g g-1 where total biomass was -2 and during early growth period, but it decreased to 0.0176 g g-1 during the later growth period when total biomass was >218 g m-2. During vegetative growth (up to first-pod), 58% of N was partitioned to leaves and 42% to stems. Depending on growth conditions, 37-72% of leaf N and 12-56% of stem N was remobilized to the grains. The parameter estimates and functions obtained in this study can be used in chickpea simulation models to simulate N accumulation and distribution.
Resumo:
Nitrogen (N) is the largest agricultural input in many Australian cropping systems and applying the right amount of N in the right place at the right physiological stage is a significant challenge for wheat growers. Optimizing N uptake could reduce input costs and minimize potential off-site movement. Since N uptake is dependent on soil and plant water status, ideally, N should be applied only to areas within paddocks with sufficient plant available water. To quantify N and water stress, spectral and thermal crop stress detection methods were explored using hyperspectral, multispectral and thermal remote sensing data collected at a research field site in Victoria, Australia. Wheat was grown over two seasons with two levels of water inputs (rainfall/irrigation) and either four levels (in 2004; 0, 17, 39 and 163 kg/ha) or two levels (in 2005; 0 and 39 kg/ha N) of nitrogen. The Canopy Chlorophyll Content Index (CCCI) and modified Spectral Ratio planar index (mSRpi), two indices designed to measure canopy-level N, were calculated from canopy-level hyperspectral data in 2005. They accounted for 76% and 74% of the variability of crop N status, respectively, just prior to stem elongation (Zadoks 24). The Normalised Difference Red Edge (NDRE) index and CCCI, calculated from airborne multispectral imagery, accounted for 41% and 37% of variability in crop N status, respectively. Greater scatter in the airborne data was attributable to the difference in scale of the ground and aerial measurements (i.e., small area plant samples against whole-plot means from imagery). Nevertheless, the analysis demonstrated that canopy-level theory can be transferred to airborne data, which could ultimately be of more use to growers. Thermal imagery showed that mean plot temperatures of rainfed treatments were 2.7 °C warmer than irrigated treatments (P < 0.001) at full cover. For partially vegetated fields, the two-Dimensional Crop Water Stress Index (2D CWSI) was calculated using the Vegetation Index-Temperature (VIT) trapezoid method to reduce the contribution of soil background to image temperature. Results showed rainfed plots were consistently more stressed than irrigated plots. Future work is needed to improve the ability of the CCCI and VIT methods to detect N and water stress and apply both indices simultaneously at the paddock scale to test whether N can be targeted based on water status. Use of these technologies has significant potential for maximising the spatial and temporal efficiency of N applications for wheat growers. ‘Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.
Resumo:
These rootstock and nitrogen fertiliser studies confirmed that rootstock race can significantly affect the development of postharvest disease and mineral nutrient accumulation in Hass avocado fruit. When Hass (Guatemalan race) was grafted to seedling Velvick (West Indian race) rootstock, the severity and incidence of anthracnose in fruit were significantly reduced by up to 64 and 37%, respectively, compared with seedling Duke 6 (Mexican race) rootstock. Stem-end rot was also influenced by rootstock in some seasons, and significant reductions (up to 87%) in the severity and incidence of stem-end rot were recorded in Hass fruit from Velvick compared with Duke 6 rootstock trees. These improvements in postharvest diseases were associated with significantly lower concentrations of nitrogen and potassium, higher concentrations of calcium and magnesium, lower ratios of nitrogen:calcium and higher ratios of calcium + magnesium:potassium in Hass leaves and fruit from Velvick compared with Duke 6 rootstock trees. Altering the rate of nitrogen fertiliser had minimal impact on postharvest disease development. However, in one season, reducing the rate of nitrogen fertiliser to nil significantly reduced the concentration of nitrogen in the fruit skin, decreased the nitrogen:calcium ratio and significantly reduced the severity and incidence of anthracnose in Hass fruit from both Velvick and Duke 6 rootstock trees. The form of nitrogen fertiliser (ammonium compared with nitrate) applied to the trees did not significantly affect the postharvest disease susceptibility of Hass avocado fruit on either Velvick or Duke 6 rootstock. The Guatemalan race rootstocks, Anderson 8 and Anderson 10, were also found to be superior to the Mexican race rootstock, Parida 1, for reducing anthracnose severity. This again, was associated with a better balance of mineral nutrients (significantly lower nitrogen:calcium and higher calcium + magnesium:potassium ratios) in the fruit. This rootstock effect, however, was only observed in the first season of a 3-year experiment, possibly because of a better balance between vegetative growth and fruit production in Parida 1 in the latter two seasons. Significant positive correlations between anthracnose severity and fruit skin nitrogen:calcium ratios were evident across all experiments.
Resumo:
The fate of nitrogen (N) applied in biosolids was investigated in a forage production system on an alluvial clay loam soil in south-eastern Queensland, Australia. Biosolids were applied in October 2002 at rates of 6, 12, 36, and 54dryt/ha for aerobically digested biosolids (AE) and 8, 16, 48, and 72dryt/ha for anaerobically digested biosolids (AN). Rates were based on multiples of the Nitrogen Limited Biosolids Application rate (0.5, 1, 3, and 4.5NLBAR) for each type of biosolid. The experiment included an unfertilised control and a fertilised control that received multiple applications of synthetic fertiliser. Forage sorghum was planted 1 week after biosolids application and harvested 4 times between December 2002 and May 2003. Dry matter production was significantly greater from the biosolids-treated plots (21-27t/ha) than from the unfertilised (16t/ha) and fertilised (18t/ha) controls. The harvested plant material removed an extra 148-488kg N from the biosolids-treated plots. Partial N budgets were calculated for the 1NLBAR and 4.5NLBAR treatments for each biosolids type at the end of the crop season. Crop removal only accounted for 25-33% of the applied N in the 1NLBAR treatments and as low as 8-15% with 4.5NLBAR. Residual biosolids N was predominantly in the form of organic N (38-51% of applied biosolids N), although there was also a significant proportion (10-23%) as NO3-N, predominantly in the top 0.90m of the soil profile. From 12 to 29% of applied N was unaccounted for, and presumed to be lost as gaseous nitrogen and/or ammonia, as a consequence of volatilisation or denitrification, respectively. In-season mineralisation of organic N in biosolids was 43-59% of the applied organic N, which was much greater than the 15% (AN)-25% (AE) expected, based on current NLBAR calculation methods. Excessive biosolids application produced little additional biomass but led to high soil mineral N concentrations that were vulnerable to multiple loss pathways. Queensland Guidelines need to account for higher rates of mineralisation and losses via denitrification and volatilisation and should therefore encourage lower application rates to achieve optimal plant growth and minimise the potential for detrimental impacts on the environment.
Resumo:
In semi-arid areas such as western Nebraska, interest in subsurface drip irrigation (SDI) for corn is increasing due to restricted irrigation allocations. However, crop response quantification to nitrogen (N) applications with SDI and the environmental benefits of multiple in-season (IS) SDI N applications instead of a single early-season (ES) surface application are lacking. The study was conducted in 2004, 2005, and 2006 at the University of Nebraska-Lincoln West Central Research and Extension Center in North Platte, Nebraska, comparing two N application methods (IS and ES) and three N rates (128, 186, and 278 kg N ha(-1)) using a randomized complete block design with four replications. No grain yield or biomass response was observed in 2004. In 2005 and 2006, corn grain yield and biomass production increased with increasing N rates, and the IS treatment increased grain yield, total N uptake, and gross return after N application costs (GRN) compared to the ES treatment. Chlorophyll meter readings taken at the R3 corn growth stage in 2006 showed that less N was supplied to the plant with ES compared to the IS treatment. At the end of the study, soil NO3-N masses in the 0.9 to 1.8 m depth were greater under the IS treatment compared to the ES treatment. Results suggested that greater losses of NO3-N below the root zone under the ES treatment may have had a negative effect on corn production. Under SDI systems, fertigating a recommended N rate at various corn growth stages can increase yields, GRN, and reduce NO3-N leaching in soils compared to concentrated early-season applications.