944 resultados para nanostructured materials


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cyclotron resonance (CR) of electrons in GaAs/AlGaAs quantum wells is investigated theoretically to explain a recent CR experiment, where two CR peaks were observed at high magnetic fields when both spin-up and spin-down states of the lowest Landau level are occupied. Our theoretical model takes into account the conduction band non-parabolicity, the electron bulk longitude-optic-phonon coupling, and the self-consistent subband structure. A good agreement is found.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gas bubble dynamic template, a new green and promising template, can be used to prepare nanostructured materials with different shapes from electrochemical deposition processes. Different morphological platinum nanomaterials have been synthesized by the replacement reaction of the deposited copper nanomaterials which were obtained under negative potential along with H-2 evolution (dynamic template) at a glassy carbon electrode. Scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical methods were adopted to characterize their structures and properties. The nanomaterials platinum exhibited excellent catalytic activity toward oxygen reduction. The results demonstrated that the strategy is a simple, cost-effective, and potent method to prepare platinum nanomaterials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (NIPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium-tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet-visiblenear-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV-vis-NIR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-doped polyaniline (PANI) micro-rings have been successfully generated electrochemically. The polymer forming rings were about 100 nm wide, and the ring diameter is tunable from several to dozens of micrometres depending on deferent current densities. The morphology of such nanostructured polyaniline rings was investigated and further confirmed with field-emission scanning electron microscopy (FE-SEM). Furthermore, the film was characterized using UV/visible spectroscopy and cyclic voltammetry. The bubble template formation mechanism of the micro-rings was also proposed. Such nanostructured materials synthesized electrochemically open up a new approach to surface morphology control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we employed triphenylmethanethiol (TPMT) as a novel rigid agent for capping gold nanoparticles and the TPMT monolayer-protected gold nanoparticles were characterized by various analytical techniques. High-resolution transmission electron microscopy showed a narrow dispersed gold core with an average core diameter of ca. 3.6 nm. The UV/vis spectrum revealed the surface plasmon absorbance at 528 nm. The p-pi conjugated structure of the TPMT ligand was confirmed by nuclear magnetic resonance. Differential scanning calorimetry and Fourier transform infrared spectroscopy revealed the rigid nature of the TPMT chains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoparticulate ferric oxide - tris - (2,4-di-t-amylphenoxy) - (8-quinolinolyl) copper phthalocyanine Langmuir-Blodgett Z-type multilayers were obtained by using monodisperse nanoparticle ferric oxide hydrosol as the subphase. XPS data reveal that the nanoparticle ferric oxide exist as alpha -Fe2O3 phase in the films. Transition electron microscopic (TEM) image of the alternating monolayer shows that the film was highly covered by the copper phthalocyanine derivative and the nanoparticles were arranged rather closely. IR and visible spectra all give the results that the nanoparticles were deposited onto the substrate with the copper phthalocyanine derivative. The gas-sensing measurements show that the alternating LB film had very fast response-recovery characteristic to 2 ppm C2H5OH gas, and also sensitive to larger than 200 ppm NH3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Of late, the magnetic properties of micro/nano-structures have attracted intense research interest both fundamentally and technologically particularly to address the question that how the manipulation in the different layers of nanostructures, geometry of a patterned structure can affect the overall magnetic properties, while generating novel applications such as in magnetic sensors, storage devices, integrated inductive components and spintronic devices. Depending on the applications, materials with high, medium or low magnetic anisotropy and their possible manipulation are required. The most dramatic manifestation in this respect is the chance to manipulate the magnetic anisotropy over the intrinsic preferential direction of the magnetization, which can open up more functionality particularly for device applications. Types of magnetic anisotropies of different nanostructured materials and their manipulation techniques are investigated in this work. Detail experimental methods for the quantitative determination of magnetic anisotropy in nanomodulated Ni45Fe55 thin film are studied. Magnetic field induced in-plane rotations within the nanomodulated Ni45Fe55 continuous films revealed various rotational symmetries of magnetic anisotropy due to dipolar interactions showing a crossover from lower to higher fold of symmetry as a function of modulation geometry. In a second approach, the control of exchange anisotropy at ferromagnetic (FM) – aniferomagnetic (AFM) interface in multifferoic nanocomposite materials, where two different phase/types of materials were simultaneously synthesized, was investigated. The third part of this work was to study the electroplated thin films of metal alloy nanocomposite for enhanced exchange anisotropy. In this work a unique observation of an anti-clock wise as well as a clock wise hysteresis loop formation in the Ni,Fe solid solution with very low coercivity and large positive exchange anisotropy/exchange bias have been investigated. Hence, controllable positive and negative exchange anisotropy has been observed for the first time which has high potential applications such as in MRAM devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Química (Química Analítica), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron wave motion in a quantum wire with periodic structure is treated by direct solution of the Schrödinger equation as a mode-matching problem. Our method is particularly useful for a wire consisting of several distinct units, where the total transfer matrix for wave propagation is just the product of those for its basic units. It is generally applicable to any linearly connected serial device, and it can be implemented on a small computer. The one-dimensional mesoscopic crystal recently considered by Ulloa, Castaño, and Kirczenow [Phys. Rev. B 41, 12 350 (1990)] is discussed with our method, and is shown to be a strictly one-dimensional problem. Electron motion in the multiple-stub T-shaped potential well considered by Sols et al. [J. Appl. Phys. 66, 3892 (1989)] is also treated. A structure combining features of both of these is investigated

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is found that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. A strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing indirect evidence of the coherent microwave radiation by the crystals. A similar dependence has been found for a crystal placed between the Fabry-Perot superconducting mirrors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report experimental studies of crystals of Mn12 molecular magnetic clusters in pulsed magnetic fields with sweep rates up to 410^3 T/s . The steps in the magnetization curve are observed at fields that are shifted with respect to the resonant field values. The shift systematically increases as the rate of the field sweep goes up. These data are consistent with the theory of the collective dipolar relaxation in molecular magnets.