794 resultados para muscle tone
Resumo:
Purpose: Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and alpha-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats. Methods: Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d.wk(-1) at similar to 70% V (over dot)O(2max) for up to 90 min.d(-1) for 14 wk. Results: Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor F coactivator 1 alpha (PGC-1 alpha) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1 alpha mRNA, PGC-1 alpha and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats. Conclusions: Vitamin E and alpha-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.
Resumo:
Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 298: R1485-R1495, 2010. First published April 14, 2010; doi:10.1152/ajpregu.00467.2009.-The world's elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Counteracting the progressive loss of muscle mass that occurs in the elderly, known as sarcopenia, represents a major hurdle in achieving these goals. Indirect evidence for a role of inflammation in sarcopenia is that markers of systemic inflammation correlate with the loss of muscle mass and strength in the elderly. More direct evidence is that compared with skeletal muscle of young people, the number of macrophages is lower, the gene expression of several cytokines is higher, and stress signaling proteins are activated in skeletal muscle of elderly people at rest. Sarcopenia may also result from inadequate repair and chronic maladaptation following muscle injury in the elderly. Macrophage infiltration and the gene expression of certain cytokines are reduced in skeletal muscle of elderly people compared with young people following exercise-induced muscle injury. Further research is required to identify the cause(s) of inflammation in skeletal muscle of elderly people. Additional work is also needed to expand our understanding of the cells, proteins, and transcription factors that regulate inflammation in the skeletal muscle of elderly people at rest and after exercise. This knowledge is critical for devising strategies to restrict sarcopenia, and improve the health of today's elderly population.
Resumo:
We investigated the effect of carbohydrate ingestion after maximal lengthening contractions of the knee extensors on circulating concentrations of myocellular proteins and cytokines, and cytokine mRNA expression in muscle. Using a cross-over design, 10 healthy males completed 5 sets of 10 lengthening (eccentric) contractions (unilateral leg press) at 120% 1 repetition-maximum. Subjects were randomized to consume a carbohydrate drink (15% weight per volume; 3 g/kg BM) for 3 h after exercise using one leg, or a placebo drink after exercise using the contralateral leg on another day. Blood samples (10 mL) were collected before exercise and after 0, 30, 60, 90, 120, 150, and 180 min of recovery. Muscle biopsies (vastus lateralis) were collected before exercise and after 3 h of recovery. Following carbohydrate ingestion, serum concentrations of glucose (30-90 min and at 150 min) and insulin (30-180 min) increased (P < 0.05) above pre-exercise values. Serum myoglobin concentration increased (similar to 250%; P < 0.05) after both trials. In contrast, serum cytokine concentrations were unchanged throughout recovery in both trials. Muscle mRNA expression for IL-8 (6.4-fold), MCP-1 (4.7-fold), and IL-6 (7.3-fold) increased substantially after carbohydrate ingestion. TNF-alpha mRNA expression did not change after either trial. Carbohydrate ingestion during early recovery from exercise-induced muscle injury may promote proinflammatory reactions within skeletal muscle.
Resumo:
Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Intermittent running has been shown to result in preferential reductions in eccentric hamstring strength, which increase the risk of sustaining a HSI. The eccentric specific nature of this decline in hamstring function implicates central mechanisms, as peripheral fatigue mechanisms tend to impact upon both concentric and eccentric contractions modes. However, neural function of the hamstrings, such as the median power frequency (MPF) of the surface electromyography signal has yet to be examined in the fatigued hamstring following intermittent sprint running. AIM: To determine the impact of fatigue induced by intermittent sprinting on the MPF of the medial and lateral hamstring muscles. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±180.s-1 and ±60.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused a significant reduction in eccentric knee flexor strength (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) but not concentric strength (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, MPF of the lateral hamstrings showed a significant decline eccentrically (0.86; 95% CI = 0.59 to 1.54; P=0.038) and concentrically (0.76; 95%CI = 0.66 to 0.83; P=0.039). Similar declines in MPF were also noted in the medial hamstrings eccentrically (1.54; 95% CI = 0.59 to 7.9; P=0.005) and concentrically (1.18; 95% CI = 0.44 to 6.8; P=0.040). CONCLUSION: Whilst sprint running induced fatigue led to a eccentric specific reduction in knee flexor torque, MPF was suppressed across both contraction modes. This would indicate that factors associated with the decline in MPF do not appear to explain the contraction mode-specific loss of strength after intermittent sprints. This would implicate other central mechanisms, such as declines in voluntary activation, in explaining the eccentric specific decline in strength seen following sprint running.
Resumo:
The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.
Resumo:
In 1993, contrary to the trend towards enterprise bargaining, and despite an employment environment favouring strong managerial prerogative, a small group of employers in the Queensland commercial health and fitness industry sought industrial regulation through an industry-specific award. A range of factors, including increased competition and unscrupulous profiteers damaging the industry’s reputation, triggered the actions as a business strategy. The strategic choices of the employer group, to approach a union to initiate a consent award, are the inverse of behaviours expected under strategic choice theory. This article argues that organizational size, collective employer action, focus on industry rather than organizational outcomes and the traditional industrial relations system providing broader impacts explain their atypical behaviour.
Resumo:
Cold water immersion (CWI) is a popular recovery modality, but actual physiological responses to CWI after exercise in the heat have not been well documented. The purpose of this study was to examine effects of 20-min CWI (14 degrees C) on neuromuscular function, rectal (T(re)) and skin temperature (T(sk)), and femoral venous diameter after exercise in the heat. Ten well-trained male cyclists completed two bouts of exercise consisting of 90-min cycling at a constant power output (216+/-12W) followed by a 16.1km time trial (TT) in the heat (32 degrees C). Twenty-five minutes post-TT, participants were assigned to either CWI or control (CON) recovery conditions in a counterbalanced order. T(re) and T(sk) were recorded continuously, and maximal voluntary isometric contraction torque of the knee extensors (MVIC), MVIC with superimposed electrical stimulation (SMVIC), and femoral venous diameters were measured prior to exercise, 0, 45, and 90min post-TT. T(re) was significantly lower in CWI beginning 50min post-TT compared with CON, and T(sk) was significantly lower in CWI beginning 25min post-TT compared with CON. Decreases in MVIC, and SMVIC torque after the TT were significantly greater for CWI compared with CON; differences persisted 90min post-TT. Femoral vein diameter was approximately 9% smaller for CWI compared with CON at 45min post-TT. These results suggest that CWI decreases T(re), but has a negative effect on neuromuscular function.
Resumo:
The aim of the present study was to determine the effect of carbohydrate (CHO; sucrose) ingestion and environmental heat on the development of fatigue and the distribution of power output during a 16.1-km cycling time trial. Ten male cyclists (Vo(2max) = 61.7 +/- 5.0 ml.kg(-1).min(-1), mean +/- SD) performed four 90-min constant-pace cycling trials at 80% of second ventilatory threshold (220 +/- 12 W). Trials were conducted in temperate (18.1 +/- 0.4 degrees C) or hot (32.2 +/- 0.7 degrees C) conditions during which subjects ingested either CHO (0.96 g.kg(-1).h(-1)) or placebo (PLA) gels. All trials were followed by a 16.1-km time trial. Before and immediately after exercise, percent muscle activation was determined using superimposed electrical stimulation. Power output, integrated electromyography (iEMG) of vastus lateralis, rectal temperature, and skin temperature were recorded throughout the trial. Percent muscle activation significantly declined during the CHO and PLA trials in hot (6.0 and 6.9%, respectively) but not temperate conditions (1.9 and 2.2%, respectively). The decline in power output during the first 6 km was significantly greater during exercise in the heat. iEMG correlated significantly with power output during the CHO trials in hot and temperate conditions (r = 0.93 and 0.73; P < 0.05) but not during either PLA trial. In conclusion, cyclists tended to self-select an aggressive pacing strategy (initial high intensity) in the heat.
Resumo:
The aim of this systematic review was to examine the effect of Contrast Water Therapy (CWT) on recovery following exercise induced muscle damage. Controlled trials were identified from computerized literature searching and citation tracking performed up to February 2013. Eighteen trials met the inclusion criteria; all had a high risk of bias. Pooled data from 13 studies showed that CWT resulted in significantly greater improvements in muscle soreness at the five follow-up time points(<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Pooled data also showed that CWT significantly reduced muscle strength loss at each follow-up time (<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Despite comparing CWT to a large number of other recovery interventions, including cold water immersion, warm water immersion, compression, active recovery and stretching, there was little evidence for a superior treatment intervention. The current evidence base shows that CWT is superior to using passive recovery or rest after exercise; the magnitudes of these effects may be most relevant to an elite sporting population. There seems to be little difference in recovery outcome between CWT and other popular recovery interventions.
Resumo:
We investigated the effects of an Ironman triathlon race on markers of muscle damage, inflammation and heat shock protein 70 (HSP70). Nine well-trained male triathletes (mean +/- SD age 34 +/- 5 years; VO(2peak) 66.4 ml kg(-1) min(-1)) participated in the 2004 Western Australia Ironman triathlon race (3.8 km swim, 180 km cycle, 42.2 km run). We assessed jump height, muscle strength and soreness, and collected venous blood samples 2 days before the race, within 30 min and 14-20 h after the race. Plasma samples were analysed for muscle proteins, acute phase proteins, cytokines, heat shock protein 70 (HSP70), and clinical biochemical variables related to dehydration, haemolysis, liver and renal functions. Muscular strength and jump height decreased significantly (P < 0.05) after the race, whereas muscle soreness and the plasma concentrations of muscle proteins increased. The cytokines interleukin (IL)-1 receptor antagonist, IL-6 and IL-10, and HSP70 increased markedly after the race, while IL-12p40 and granulocyte colony-stimulating factor (G-CSF) were also elevated. IL-4, IL-1beta and tumour necrosis factor-alpha did not change significantly, despite elevated C-reactive protein and serum amyloid protein A on the day after the race. Plasma creatinine, uric acid and total bilirubin concentrations and gamma-glutamyl transferase activity also changed after the race. In conclusion, despite evidence of muscle damage and an acute phase response after the race, the pro-inflammatory cytokine response was minimal and anti-inflammatory cytokines were induced. HSP70 is released into the circulation as a function of exercise duration.
Resumo:
The purpose of this study was to compare the effects of exercise intensity and exercise-induced muscle damage on changes in anti-inflammatory cytokines and other inflammatory mediators. Nine well-trained male runners completed three different exercise trials on separate occasions: (1) level treadmill running at 60% VO2max (moderate-intensity trial) for 60 min; (2) level treadmill running at 85% VO2max (high-intensity trial) for 60 min; (3) downhill treadmill running (-10% gradient) at 60% VO2max (downhill running trial) for 45 min. Blood was sampled before, immediately after and 1 h after exercise. Plasma was analyzed for interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-5, IL-10, IL-12p40, IL-13, monocyte chemotactic protein-1 (MCP-1), prostaglandin E(2), leukotriene B(4) and heat shock protein 70 (HSP70). The plasma concentrations of IL-1ra, IL-12p40, MCP-1 and HSP70 increased significantly (P<0.05) after all three trials. Plasma prostaglandin E(2) concentration increased significantly after the downhill running and high-intensity trials, while plasma IL-10 concentration increased significantly only after the high-intensity trial. IL-4 and leukotriene B(4) did not increase significantly after exercise. Plasma IL-1ra and IL-10 concentrations were significantly higher (P<0.05) after the high-intensity trial than after both the moderate-intensity and downhill running trials. Therefore, following exercise up to 1 h duration, exercise intensity appears to have a greater effect on anti-inflammatory cytokine production than exercise-induced muscle damage
Resumo:
Introduction: Unaccustomed eccentric exercise often results in muscle damage and neutrophil activation. We examined changes in plasma cytokines stress hormones, creatine kinase activity and myoglobin concentration, neutrophil surface receptor expression, degranulation, and the capacity of neutrophils to generate reactive oxygen species in response to in vitro stimulation after downhill running. Methods: Ten well-trained male runners ran downhill on a treadmill at a gradient of -10% for 45 min at 60% V̇O2max. Blood was sampled immediately before (PRE) and after (POST), 1 h (1 h POST), and 24 h (24 h POST) after exercise. Results: At POST, there were significant increases (P < 0.01) in neutrophil count (32%), plasma interleukin (IL)-6 concentration (460%), myoglobin (Mb) concentration (1100%), and creatine kinase (CK) activity (40%). At 1 h POST, there were further increases above preexercise values for neutrophil count (85%), plasma Mb levels (1800%), and CK activity (56%), and plasma IL-6 concentration remained above preexercise values (410%) (P < 0.01). At 24 h POST, neutrophil counts and plasma IL-6 levels had returned to baseline, whereas plasma Mb concentration (100%) and CK activity (420%) were elevated above preexercise values (P < 0.01). There were no significant changes in neutrophil receptor expression, degranulation and respiratory burst activity, and plasma IL-8 and granulocyte-colony stimulating factor concentrations at any time after exercise. Neutrophil count correlated with plasma Mb concentration at POST (r = 0.64, P < 0.05), and with plasma CK activity at POST (r = 0.83, P < 0.01) and 1 h POST (r = 0.78, P < 0.01). Conclusion: Neutrophil activation remains unchanged after downhill running in well-trained runners, despite increases in plasma markers of muscle damage.
Resumo:
The general aim of this book is to provide a comprehensive summary of the characteristics of exercise-induced muscle damage and the mechanisms of tissue inflammation. The authors present a large amount of our own original data and have summarised the research of others.
Resumo:
Objective: To investigate the validity of the Trendelenburg test (TT) using an ultrasound-guided nerve block (UNB) of the superior gluteal nerve and determine whether the reduction in hip abductor muscle (HABD) strength would result in the theorized mechanical compensatory strategies measured during the TT. Design: Quasi-experimental. Setting: Hospital. Participants: Convenience sample of 9 healthy men. Only participants with no current or previous injury to the lumbar spine, pelvis, or lower extremities, and no previous surgeries were included. Interventions: Ultrasound-guided nerve block. Main Outcome Measures: Hip abductor muscle strength (percent body weight [%BW]), contralateral pelvic drop (cPD), change in contralateral pelvic drop (Delta cPD), ipsilateral hip adduction, and ipsilateral trunk sway (TRUNK) measured in degrees. Results: The median age and weight of the participants were 31 years (interquartile range [IQR], 22-32 years) and 73 kg (IQR, 67-81 kg), respectively. An average 52% reduction of HABD strength (z = 2.36, P = 0.02) resulted after the UNB. No differences were found in cPD or Delta cPD (z = 0.01, P = 0.99, z = 20.67, P = 0.49, respectively). Individual changes in biomechanics showed no consistency between participants and nonsystematic changes across the group. One participant demonstrated the mechanical compensations described by Trendelenburg. Conclusions: The TT should not be used as a screening measure for HABD strength in populations demonstrating strength greater than 30% BW but should be reserved for use with populations with marked HABD weakness. Clinical Relevance: This study presents data regarding a critical level of HABD strength required to support the pelvis during the TT.
Resumo:
Context: The Ober and Thomas tests are subjective and involve a "negative" or "positive" assessment, making them difficult to apply within the paradigm of evidence-based medicine. No authors have combined the subjective clinical assessment with an objective measurement for these special tests. Objective: To compare the subjective assessment of iliotibial band and iliopsoas flexibility with the objective measurement of a digital inclinometer, to establish normative values, and to provide an evidence-based critical criterion for determining tissue tightness. Design: Cross-sectional study. Setting: Clinical research laboratory. Patients or Other Participants: Three hundred recreational athletes (125 men, 175 women; 250 in injured group, 50 in control group). Main Outcome Measure(s): Iliotibial band and iliopsoas muscle flexibility were determined subjectively using the modified Ober and Thomas tests, respectively. Using a digital inclinometer, we objectively measured limb position. lnterrater reliability for the subjective assessment was compared between 2 clinicians for a random sample of 100 injured participants, who were classified subjectively as either negative or positive for iliotibial band and iliopsoas tightness. Percentage of agreement indicated interrater reliability for the subjective assessment. Results: For iliotibial band flexibility, the average inclinometer angle was -24.59 degrees +/- 7.27 degrees. A total of 432 limbs were subjectively assessed as negative (-27.13 degrees +/- 5.53 degrees) and 168 as positive (-16.29 degrees +/- 6.87 degrees). For iliopsoas flexibility, the average inclinometer angle was -10.60 degrees +/- 9.61 degrees. A total of 392 limbs were subjectively assessed as negative (-15.51 degrees +/- 5.82 degrees) and 208 as positive (0.34 degrees +/- 7.00 degrees). The critical criteria for iliotibial band and iliopsoas flexibility were determined to be -23.16 degrees and -9.69 degrees, respectively. Between-clinicians agreement was very good, ranging from 95.0% to 97.6% for the Thomas and Ober tests, respectively. Conclusions: Subjective assessments and instrumented measurements were combined to establish normative values and critical criterions for tissue flexibility for the modified Ober and Thomas tests.