966 resultados para muscle stimulation
Resumo:
Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio. Mechanical stimulation induced an intracellular Ca(2+) wave in pSMC and 6B5N cells that propagated to neighboring cells, whereas Ca(2+) waves in A7r5 cells failed to progress to neighboring cells. We demonstrate that Cx43 forms the functional GJs that are involved in mediating intercellular Ca(2+) waves and that co-expression of Cx40 with Cx43, depending on their expression ratio, may interfere with Cx43 GJ formation, thus altering junctional communication.
Resumo:
RÉSUMÉ Introduction L'effet des agents myorelaxants ainsi que des anticholinestérases sur la profondeur d'anesthésie a été étudié avec des résultats contradictoires. C'est pourquoi nous avons évalué l'effet de l'atracurium et de la néostigmine sur le BIS (bispectral index) ainsi que sur les potentiels auditives évoqués (middle-latency auditory evoked potentials, A-Line® autoregressive index [AAI]). Méthodes Après avoir obtenu l'accord du comité d'éthique local, nous avons étudié 40 patients ayant donné leur consentement écrit, ASA I-II, âgé de 18-69 ans. L'anesthésie générale a consisté en anesthésie intra-veineuse à objectif de concentration avec du propofol et du remifentanil. La fonction de la jonction neuromusculaire était monitorée en continu au moyen d'un électromyographe. Le BIS et l'AAI ont été enregistrés en continu. Après avoir atteint des valeurs stables au niveau du BIS, les patients ont été attribués à deux groupes par randomisation. Les patients du groupe 1 ont reçu 0.4 mg kg-1 d'atracurium et 5 minutes plus tard le même volume de NaCI 0.9%, dans le groupe 2 la séquence d'injection était inversée, le NaCI 0.9% en premier et l'atracurium en deuxième. Au moment où le premier « twitch » d'un train de quatre atteignait 10% de l'intensité avant la relaxation, les patients ont été randomisés une deuxième fois. Les patients du groupe N ont reçu 0.04 mg kg-1 de néostigmine et 0.01 rn9 kg-1 de glycopyrrolate alors que le groupe contrôle (G) ne recevait que 0.01 mg kg-] de glycopyrrolate. Résultats : L 'injection d'atracurium ou de NaCI 0.9% n'a pas eu d'effet sur le BIS ou l'AAI. Après l'injection de néostigmine avec glycopyrrolate, le BIS et I `AAI a augmenté de manière significative (changement maximal moyen du BIS 7.1 ± 7.5, P< 0.001, de l'AAI 9.7 ± 10.5, P< 0.001). Suite à l'injection de glycopyrrolate seule, le BIS et l'AAI a augmenté également (changement maximal moyen du BIS 2.2 ± 3.4, P< 0.008, de l'AAI 3.5 ± 5.7, P< 0.012), mais cette augmentation était significativement moins importante que dans le groupe N (P< 0.012 pour le BIS, P< 0.027 pour l'AAI). Conclusion Ces résultats laissent supposer que la néostigmine peut altérer la profondeur de l'anesthésie. La diminution de la profondeur d'anesthésie enregistrée par le BIS et l'AAI correspond probablement à une réapparition brusque d'une stimulation centrale liée à la proprioception. Au contraire, lors de la curarisation, le tonus musculaire diminue de manière beaucoup plus progressive, pouvant ainsi expliquer l'absence d'effet sur la profondeur d'anesthésie. ABSTRACT Background. Conflicting effects of neuromuscular blocking drugs and anticholinesterases on depth of anaesthesia have been reported. Therefore we evaluated the effect of atracurium and neostigmine on bispectral index (BIS) and middle-latency auditory evoked potentials (AAI). Methods. We studied 40 patients (ASA I-II) aged 18-69 yr. General anaesthesia consisted of propofol and remifentanil by target-controlled infusion and neuromuscular function was monitored by electromyography. When BIS reached stable values, patients were randomly assigned to one of two groups. Group I received atracurium 0.4 mg kg-1 and, 5 min later, the same volume of NaCl 0.9%; group 2 received saline first and then atracurium. When the first twitch of a train of four reached 10% of control intensity, patients were again randomized: one group (N) received neostigmine 0.04 mg kg-1 and glycopyrrolate 0.01 mg kg-1, and the control group (G) received only glycopyrrolate. Results. Injection of atracurium or NaCl 0.9% had no effect on BIS or AAI. After neostigmine¬glycopyrrolate, BIS and AAI increased significantly (mean maximal change of BIS 7.1 [SD 7.5], P<0.001; mean maximal change of AAI 9.7 [10.5], P<0.001). When glycopyrrolate was injected alone BIS and AAI also increased (mean maximal change of BIS 2.2 [3.4], P=0.008; mean maximal change of AAI 3.5 [5.7], P=0.012), but this increase was significantly less than in group N (P=0.012 for BIS; P=0.027 for AAI). Conclusion. These data suggest that neostigmine alters the state of propofol-remifentanil anaesthesia and may enhance recovery.
Resumo:
PURPOSE: The present study was designed to determine the stimulation intensity necessary for an adequate assessment of central and peripheral components of neuromuscular fatigue of the knee extensors. METHODS: Three different stimulation intensities (100, 120 and 150 % of the lowest intensity evoking a plateau in M-waves and twitch amplitudes, optimal stimulation intensity, OSI) were used to assess voluntary activation level (VAL) as well as M-wave, twitch and doublet amplitudes before, during and after an incremental isometric exercise performed by 14 (8 men) healthy and physically active volunteers. A visual analog scale was used to evaluate the associated discomfort. RESULTS: There was no difference (p > 0.05) in VAL between the three intensities before and after exercise. However, we found that stimulating at 100 % OSI may overestimate the extent of peripheral fatigue during exercise, whereas 150 % OSI stimulations led to greater discomfort associated with doublet stimulations as well as to an increased antagonist co-activation compared to 100 % OSI. CONCLUSION: We recommend using 120 % OSI, as it constitutes a good trade-off between discomfort and reliable measurements.
Resumo:
In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.
Resumo:
BACKGROUND: Direct colonic electrical stimulation may prove to be a treatment option for specific motility disorders such as chronic constipation. The aim of this study was to provoke colonic contractions using electrical stimulation delivered from a battery-operated device. METHODS: Electrodes were inserted into the caecal seromuscular layer of eight anaesthetized pigs. Contractions were induced by a neurostimulator (Medtronic 3625). Caecal motility was measured simultaneously by video image analysis, manometry and a technique assessing colonic transit. RESULTS: Caecal contractions were generated using 8-10 V amplitude, 1000 micros pulse width, 120 Hz frequency for 10-30 s, with an intensity of 7-15 mA. The maximal contraction strength was observed after 20-25 s. Electrical stimulation was followed by a relaxation phase of 1.5-2 min during which contractions propagated orally and aborally over at least 10 cm. Spontaneous and stimulated caecal motility values were significantly different for both intraluminal pressure (mean(s.d.) 332(124) and 463(187) mmHg respectively; P < 0.001, 42 experiments) and movement of contents (1.6(0.9) and 3.9(2.8) mm; P < 0.001, 40 experiments). CONCLUSION: Electrical stimulation modulated caecal motility, and provoked localized and propagated colonic contractions.
Resumo:
AIM: The study examined the effects of an oral acute administration of the beta2-agonist salbutamol (Sal) (6 mg) vs. placebo on muscle strength and fatigability in 12 non-asthmatic recreational male athletes in a randomized double-blind protocol. METHODS: Contractile properties of the right quadriceps muscle were measured during electrical stimulations, i.e. twitch, 1-s pulse trains at 20 (P(20) ) and 80 Hz (P(80) ) and during maximal voluntary isometric contraction (MVIC) before (PRE) and after (POST) a fatigue-producing protocol set by an electromyostimulation (30 contractions, frequency: 75 Hz, on-off ratio: 6.25-20s). In addition, the level of muscle voluntary activation was measured. RESULTS: In PRE and POST conditions, the peak torque (PT) of twitch, P(80) and MVIC were not modified by the treatment. The PT in POST P(20) was slightly, although not significantly, less affected by fatigue in Sal compared with placebo condition. Moreover, twitch half-relaxation time at PRE was smaller under Sal than under placebo (P < 0.05). No significant changes in the degree of voluntary activation were observed with Sal treatment in PRE or POST condition. CONCLUSION: Although these findings did not exclude completely an effect of Sal on peripheral factors of human skeletal muscle, oral acute administration of the beta2-agonist Sal seems to be without any relevant ergogenic effect on muscle contractility and fatigability in non-asthmatic recreational male athletes.
Resumo:
Respiratory muscle weakness may induce dyspnoea, secretion retention and respiratory failure. Assessing respiratory muscle strength is mandatory in neuromuscular diseases and in case of unexplained dyspnoea. A step by step approach is recommended, starting with simple volitional tests. Using spirometry, respiratory muscle weakness may be suspected on the basis of an abnormal flow-volume loop or a fall of supine vital capacity. When normal, maximal inspiratory and expiratory pressures against a near complete occlusion exclude significant muscle weakness, but low values are more difficult to interpret. Sniff nasal inspiratory pressure is a useful alternative because it is easy and it eliminates the problem of air leaks around the mouthpiece in patients with neuromuscular disorders. The strength available for coughing is easily assessed by measuring peak cough flow. In most cases, these simple non invasive tests are sufficient to confirm or to eliminate significant respiratory muscle weakness and help the timely introduction of ventilatory support or assisted cough techniques. In a minority of patients, a more complete evaluation is necessary using non volitional tests like cervical magnetic stimulation of phrenic nerves.
β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling.
Resumo:
Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.
Resumo:
Conventional (CONV) neuromuscular electrical stimulation (NMES) (i.e., short pulse duration, low frequencies) induces a higher energetic response as compared to voluntary contractions (VOL). In contrast, wide-pulse, high-frequency (WPHF) NMES might elicit-at least in some subjects (i.e., responders)-a different motor unit recruitment compared to CONV that resembles the physiological muscle activation pattern of VOL. We therefore hypothesized that for these responder subjects, the metabolic demand of WPHF would be lower than CONV and comparable to VOL. 18 healthy subjects performed isometric plantar flexions at 10% of their maximal voluntary contraction force for CONV (25 Hz, 0.05 ms), WPHF (100 Hz, 1 ms) and VOL protocols. For each protocol, force time integral (FTI) was quantified and subjects were classified as responders and non-responders to WPHF based on k-means clustering analysis. Furthermore, a fatigue index based on FTI loss at the end of each protocol compared with the beginning of the protocol was calculated. Phosphocreatine depletion (ΔPCr) was assessed using 31P magnetic resonance spectroscopy. Responders developed four times higher FTI's during WPHF (99 ± 37 ×103 N.s) than non-responders (26 ± 12 ×103 N.s). For both responders and non-responders, CONV was metabolically more demanding than VOL when ΔPCr was expressed relative to the FTI. Only for the responder group, the ∆PCr/FTI ratio of WPHF (0.74 ± 0.19 M/N.s) was significantly lower compared to CONV (1.48 ± 0.46 M/N.s) but similar to VOL (0.65 ± 0.21 M/N.s). Moreover, the fatigue index was not different between WPHF (-16%) and CONV (-25%) for the responders. WPHF could therefore be considered as the less demanding NMES modality-at least in this subgroup of subjects-by possibly exhibiting a muscle activation pattern similar to VOL contractions.
Resumo:
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Resumo:
The presence of inhibitory nonadrenergic noncholinergic (NANC) intrinsic innervation of the circular muscle of the gastrointestinal sphincters of the South American (SA) opossum was investigated in vitro. Isolated circular muscle strips from the esophagogastric and ileocolonic junctions but not from the gastroduodenal (pylorus) region developed spontaneous tension. Tetrodotoxin (TTX, 1 µM) augmented the spontaneous tension only in the ileocolonic junction strips. Electrical field stimulation of esophagogastric and ileocolonic junction strips caused frequency-dependent responses consisting of a relaxation at lower frequencies (<1 Hz) and a biphasic response or contraction at higher frequencies. In the strips from the pyloric region electrical field stimulation abolished the spontaneous activity at lower frequencies and induced contractions at higher frequencies. The responses elicited by electrical field stimulation in the three sphincters were abolished by TTX (1 µM). Electrical field-induced contractions were reduced while relaxations were enhanced by atropine (1 µM). In the presence of atropine (1 µM) and guanethidine (3 µM), electrical field stimulation, nicotine and ATP induced frequency- or concentration-dependent relaxations of the three sphincters that were abolished by TTX (1 µM). Isoproterenol and sodium nitroprusside caused concentration-dependent relaxations which were TTX-resistant. These findings indicate that the sphincteric circular muscle of the SA opossum gastrointestinal tract is relaxed by the activation of intrinsic NANC nerves and therefore can be used as a model for the study of the mechanisms involved in these responses
Resumo:
This investigation examined how the nutritional status of rats fed a low-protein diet was affected when the animals were treated with the ß-2 selective agonist clenbuterol (CL). Males (4 weeks old) from an inbred, specific-pathogen-free strain of hooded rats maintained at the Dunn Nutritional Laboratory were used in the experiments (N = 6 rats per group). CL treatment (Ventipulmin, Boehringer-Ingelheim Ltd., 3.2 mg/kg diet for 2 weeks) caused an exacerbation of the symptoms associated with protein deficiency in rats. Plasma albumin concentrations, already low in rats fed a low-protein diet (group A), were further reduced in CL rats (A = 25.05 ± 0.31 vs CL = 23.64 ± 0.30 g/l, P<0.05). Total liver protein decreased below the level seen in either pair-fed animals (group P) or animals with free access to the low-protein diet (A = 736.56 ± 26 vs CL = 535.41 ± 54 mg, P<0.05), whereas gastrocnemius muscle protein was higher than the values normally described for control (C) animals (C = 210.88 ± 3.2 vs CL = 227.14 ± 1.7 mg/g, P<0.05). Clenbuterol-treated rats also showed a reduction in growth when compared to P rats (P = 3.2 ± 1.1 vs CL = -10.2 ± 1.9 g, P<0.05). This was associated with a marked decrease in fat stores (P = 5.35 ± 0.81 vs CL = 2.02 ± 0.16 g, P<0.05). Brown adipose tissue (BAT) cytochrome oxidase activity, although slightly lower than in P rats (P = 469.96 ± 16.20 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05), was still much higher than in control rats (C = 159.55 ± 11.54 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05). The present findings support the hypothesis that an increased muscle protein content due to clenbuterol stimulation worsened amino acid availability to the liver and further reduced albumin synthesis causing exacerbation of hypoalbuminemia in rats fed a low-protein diet.
Resumo:
The main generator source of a longitudinal muscle contraction was identified as an M (mechanical-stimulus-sensitive) circuit composed of a presynaptic M-1 neuron and a postsynaptic M-2 neuron in the ventral nerve cord of the earthworm, Amynthas hawayanus, by simultaneous intracellular response recording and Lucifer Yellow-CH injection with two microelectrodes. Five-peaked responses were evoked in both neurons by a mechanical, but not by an electrical, stimulus to the mechanoreceptor in the shaft of a seta at the opposite side of an epidermis-muscle-nerve-cord preparation. This response was correlated to 84% of the amplitude, 73% of the rising rate and 81% of the duration of a longitudinal muscle contraction recorded by a mechano-electrical transducer after eliminating the other possible generator sources by partitioning the epidermis-muscle piece of this preparation. The pre- and postsynaptic relationship between these two neurons was determined by alternately stimulating and recording with two microelectrodes. Images of the Lucifer Yellow-CH-filled M-1 and M-2 neurons showed that both of them are composed of bundles of longitudinal processes situated on the side of the nerve cord opposite to stimulation. The M-1 neuron has an afferent process (A1) in the first nerve at the stimulated side of this preparation and the M-2 neuron has two efferent processes (E1 and E3) in the first and third nerves at the recording side where their effector muscle cell was identified by a third microelectrode.