959 resultados para muscle exercise


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last years, phototherapy has becoming a promising tool to improve skeletal muscle recovery after exercise, however, it was not compared with other modalities commonly used with this aim. In the present study we compared the short-term effects of cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) with placebo LEDT on biochemical markers related to skeletal muscle recovery after high-intensity exercise. A randomized double-blind placebo-controlled crossover trial was performed with six male young futsal athletes. They were treated with CWIT (5A degrees C of temperature [SD +/- 1A degrees]), active LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW of output power, 30 s of irradiation time per point, and 41.7 J of total energy irradiated per point, total of ten points irradiated) or an identical placebo LEDT 5 min after each of three Wingate cycle tests. Pre-exercise, post-exercise, and post-treatment measurements were taken of blood lactate levels, creatine kinase (CK) activity, and C-reactive protein (CRP) levels. There were no significant differences in the work performed during the three Wingate tests (p > 0.05). All biochemical parameters increased from baseline values (p < 0.05) after the three exercise tests, but only active LEDT decreased blood lactate levels (p = 0.0065) and CK activity (p = 0.0044) significantly after treatment. There were no significant differences in CRP values after treatments. We concluded that treating the leg muscles with LEDT 5 min after the Wingate cycle test seemed to inhibit the expected post-exercise increase in blood lactate levels and CK activity. This suggests that LEDT has better potential than 5 min of CWIT for improving short-term post-exercise recovery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/ mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation. J. Cell. Physiol. 226: 666-674, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin-6 (IL-6). Acute physical exercise is known to induce a pro-inflammatory cytokine profile in the plasma. However, the effect of chronic physical exercise in the production of pro- and anti-inflammatory cytokines by the skeletal muscle has never been examined. We assessed IL-6, TNF-alpha, IL-1 beta and IL-10 levels in the skeletal muscle of rats submitted to endurance training. Animals were randomly assigned to either a Sedentary group (S, n = 7) or an endurance exercise trained group (T, n = 8). Trained rats ran on a treadmill for 5 days week(-1) for 8 weeks (60% VO(2max)). Detection of IL-6, TNF-alpha, IL-1 beta and IL-10 protein expression was carried out by ELISA. We found decreased expression of IL-1 beta, IL-6, TNF-alpha and IL-10 (28%, 27%. 32% and 37%, respectively, p < 0.05) in the extensor digital longus (EDL) from T, when compared with S. In the soleus, IL-1 beta, TNF-alpha and IL-10 protein levels were similarly decreased (34%, 42% and 50%, respectively, p < 0.05) in T in relation to S, while IL-6 expression was not affected by the training protocol. In conclusion, exercise training induced decreased cytokine protein expression in the skeletal muscle. These data show that in healthy rats, 8-week moderate-intensity aerobic training down regulates skeletal muscle production of cytokines involved in the onset, maintenance and regulation of inflammation, and that the response is heterogeneous according to fibre composition. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

P>Reductions in plasma glutamine are observed after prolonged exercise. Three hypotheses can explain such a decrease: (i) high demand by the liver and kidney; (ii) impaired release from muscles; and (iii) decreased synthesis in skeletal muscle. The present study investigated the effects of exercise on glutamine synthesis and transport in rat skeletal muscle. Rats were divided into three groups: (i) sedentary (SED; n = 12); (ii) rats killed 1 h after the last exercise bout (EX-1; n = 15); and (iii) rats killed 24 h after the last exercise bout (EX-24; n = 15). Rats in the trained groups swam 1 h/day, 5 days/week for 6 weeks with a load equivalent to 5.5% of their bodyweight. Plasma glutamine and insulin were lower and corticosterone was higher in EX-1 compared with SED rats (P < 0.05 and P < 0.01, respectively). Twenty-four hours after exercise (EX-24), plasma glutamine was restored to levels seen in SED rats, whereas insulin levels were higher (P < 0.001) and costicosterone levels were lower (P < 0.01) than in EX-1. In the soleus, ammonia levels were lower in EX-1 than in SED rats (P < 0.001). After 24 h, glutamine, glutamate and ammonia levels were lower in EX-24 than in SED and EX-1 rats (P < 0.001). Soleus glutamine synthetase (GS) activity was increased in EX-1 and was decreased in EX-24 compared with SED rats (both P < 0.001). The decrease in plasma glutamine concentration in EX-1 is not mediated by GS or glutamine transport in skeletal muscle. However, 24 h after exercise, lower GS may contribute to the decrease in glutamine concentration in muscle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well known that exhaustive exercise increases serum and skeletal muscle IL-6 concentrations. However, the effect of exhaustive exercise on the concentrations of other cytokines in the muscle and in the adipose tissue is controversial. The purpose of this study was to evaluate the effect of exhaustive exercise on mRNA and protein expression of IL-10, TNF-alpha and IL-6 in different types of skeletal muscle (EDL, soleus) and in two different depots of white adipose tissue (mesenteric-MEAT and retroperitoneal-RPAT). Rats were killed by decapitation immediately (E0 group, n = 6), 2 (E2 group, n = 6) and 6 (E6 group, n = 6) hours after the exhaustion protocol, which consisted of running on a treadmill (approximately 70% VO(2max) for 50 min and then subsequently at an elevated rate that increased at 1 m/min every minute, until exhaustion). The control group (C group, n = 6) was not subjected to exercise. Cytokine protein expression increased in EDL, soleus, MEAT and RPAT from all exercised groups, as detected by ELISA. EDL IL-10 and TNF-alpha expression was higher than that of the soleus. The IL-10/TNF-alpha ratio was increased in the skeletal muscle, especially in EDL, but it was found to be decreased in the adipose tissue. These results show that exhaustive exercise presents a different effect depending on the tissue which is analysed: in the muscle, it induces an anti-inflammatory effect, especially in type 2 fibres, while the pro-inflammatory effect prevails in adipose tissue, possibly contributing to increased lipolysis to provide energy for the exercising muscle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

# 1.
To evaluate the role of adrenaline in regulating carbohydrate metabolism during moderate exercise, 10 moderately trained men completed two 20 min exercise bouts at 58 ± 2 % peak pulmonary oxygen uptake (̇Vo2,peak). On one occasion saline was infused (CON), and on the other adrenaline was infused intravenously for 5 min prior to and throughout exercise (ADR). Glucose kinetics were measured by a primed, continuous infusion of 6,6-[2H]glucose and muscle samples were obtained prior to and at 1 and 20 min of exercise.

# 2.
The infusion of adrenaline elevated (P < 0.01) plasma adrenaline concentrations at rest (pre-infusion, 0.28 ± 0.09; post-infusion, 1.70 ± 0.45 nmol l−1; means ±s.e.m.) and this effect was maintained throughout exercise. Total carbohydrate oxidation increased by 18 % and this effect was due to greater skeletal muscle glycogenolysis (P < 0.05) and pyruvate dehydrogenase (PDH) activation (P < 0.05, treatment effect). Glucose rate of appearance was not different between trials, but the infusion of adrenaline decreased (P < 0.05, treatment effect) skeletal muscle glucose uptake in ADR.

# 3.
During exercise muscle glucose 6-phosphate (G-6-P) (P = 0.055, treatment effect) and lactate (P < 0.05) were elevated in ADR compared with CON and no changes were observed for pyruvate, creatine, phosphocreatine, ATP and the calculated free concentrations of ADP and AMP.

# 4.
The data demonstrate that elevated plasma adrenaline levels during moderate exercise in untrained men increase skeletal muscle glycogen breakdown and PDH activation, which results in greater carbohydrate oxidation. The greater muscle glycogenolysis appears to be due to increased glycogen phosphorylase transformation whilst the increased PDH activity cannot be readily explained. Finally, the decreased glucose uptake observed during exercise in ADR is likely to be due to the increased intracellular G-6-P and a subsequent decrease in glucose phosphorylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Skeletal muscle insulin sensitivity is enhanced after acute exercise and short-term endurance training. We investigated the impact of exercise on the gene expression of key insulin-signaling proteins in humans. Seven untrained subjects (4 women and 3 men) completed 9 days of cycling at 63 ± 2% of peak O2 uptake for 60 min/day. Muscle biopsies were taken before, immediately after, and 3 h after the exercise bouts (on days 1 and 9). The gene expression of insulin receptor substrate-2 and the p85α subunit of phosphatidylinositol 3-kinase was significantly higher 3 h after a single exercise bout, although short-term training ameliorated this effect. Gene expression of insulin receptor and insulin receptor substrate-1 was not significantly altered at any time point. These results suggest that exercise may have a transitory impact on the expression of insulin receptor substrate-2 and phosphatidylinositol 3-kinase; however, the predominant actions of exercise on insulin sensitivity appear not to reside in the transcriptional activation of the genes encoding major insulin-signaling proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Skeletal muscle, as a consequence of its mass and great capacity for altered metabolism, has a major impact on whole-body metabolic homeostasis and is capable of remarkable adaptation in response to various physiological stimuli, including exercise and dietary intervention. Exercise-induced increases in skeletal muscle mRNA levels of a number of genes have been reported, due to transcriptional activation and/or increased mRNA stability. The cellular adaptations to exercise training appear to be due to the cumulative effects of transient increases in gene transcription after repeated exercise bouts. The relative importance of transcriptional (mRNA synthesis) and translational (mRNA stability or translational efficiency) mechanisms for the training-induced increases in skeletal muscle protein abundance remains to be fully elucidated. Dietary manipulation, and the associated alterations in nutrient availability and hormone levels, can also modify skeletal muscle gene expression, although fewer studies have been reported. A major challenge is to understand how exercise and diet exert their effects on gene and protein expression in skeletal muscle. In relation to exercise, potential stimuli include stretch and muscle tension, the pattern of motor nerve activity and the resultant calcium transients, the energy charge of the cell and substrate availability, oxygen tension and circulating hormones. These are detected by various cellular signaling mechanisms, acting on a range of downstream targets and a wide range of putative transcription factors. A key goal in the years ahead is to identify how alterations at the level of gene expression are coupled to the changes in skeletal muscle phenotype. It is clear that gene expression, although representing a specific site of regulation, is only one step in a complex cascade from the initial stimulus to the final phenotypic adaptation and integrated physiological response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined the effect of epinephrine on glucose disposal during moderate exercise when glycogenolytic flux was limited by low preexercise skeletal muscle glycogen availability. Six male subjects cycled for 40 min at 59 ± 1% peak pulmonary O2 uptake on two occasions, either without (CON) or with (EPI) epinephrine infusion starting after 20 min of exercise. On the day before each experimental trial, subjects completed fatiguing exercise and then maintained a low carbohydrate diet to lower muscle glycogen. Muscle samples were obtained after 20 and 40 min of exercise, and glucose kinetics were measured using [6,6-2H]glucose. Exercise increased plasma epinephrine above resting concentrations in both trials, and plasma epinephrine was higher (P < 0.05) during the final 20 min in EPI compared with CON. Muscle glycogen levels were low after 20 min of exercise (CON, 117 ± 25; EPI, 122 ± 20 mmol/kg dry matter), and net muscle glycogen breakdown and muscle glucose 6-phosphate levels during the subsequent 20 min of exercise were unaffected by epinephrine infusion. Plasma glucose increased with epinephrine infusion (i.e., 20-40 min), and this was due to a decrease in glucose disposal (Rd) (40 min: CON, 33.8 ± 3; EPI, 20.9 ± 4.9 µmol · kg-1 · min-1, P < 0.05), because the exercise-induced rise in glucose rate of appearance was similar in the trials. These results show that glucose Rd during exercise is reduced by elevated plasma epinephrine, even when muscle glycogen availability and utilization are low. This suggests that the effect of epinephrine does not appear to be mediated by increased glucose 6-phosphate, secondary to enhanced muscle glycogenolysis, but may be linked to a direct effect of epinephrine on sarcolemmal glucose transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of a single bout of exercise and exercise training on the expression of genes necessary for the transport and beta -oxidation of fatty acids (FA), together with the gene expression of transcription factors implicated in the regulation of FA homeostasis were investigated. Seven human subjects (3 male, 4 female, 28.9 ± 3.1 yr of age, range 20-42 yr, body mass index 22.6 kg/m2, range 17-26 kg/m2) underwent a 9-day exercise training program of 60 min cycling per day at 63% peak oxygen uptake (VO2 peak; 104 ± 14 W). On days 1 and 9 of the program, muscle biopsies were sampled from the vastus lateralis muscle at rest, at the completion of exercise, and again 3 h postexercise. Gene expression of key components of FA transport [FA translocase (FAT/CD36), plasma membrane-associated FA-binding protein], beta -oxidation [carntine palmitoyltransferase(CPT) I, beta -hydroxyacyl-CoA dehydrogenase] and transcriptional control [peroxisome proliferator-activated receptor (PPAR)alpha , PPARgamma , PPARgamma coactivator 1, sterol regulatory element-binding protein-1c] were unaltered by exercise when measured at the completion and at 3 h postexercise. Training increased total lipid oxidation by 24% (P < 0.05) for the 1-h cycling bout. This increased capacity for lipid oxidation was accompanied by an increased expression of FAT/CD36 and CPT I mRNA. Similarly, FAT/CD36 protein abundance was also upregulated by exercise training. We conclude that enhanced fat oxidation after exercise training is most closely associated with the genes involved in regulating FA uptake across the plasma membrane (FAT/CD36) and across the mitochondrial membrane (CPT I).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Skeletal muscle is a complex and heterogenous tissue capable of remarkable adaptation in response to exercise training. The role of gene transcription, as an initial target to control protein synthesis, is poorly understood.
2. Mature myofibres contain several hundred nuclei, all of which maintain transcriptional competency, although the localized responsiveness of nuclei is not well known. Myofibres are capable of hypertrophy. These processes require the activation and myogenic differentiation of mononuclear satellite cells that fuse with the enlarging or repairing myofibre.
3. A single bout of exercise in human subjects is capable of activating the expression of many diverse groups of genes.
4. The impact of repeated exercise bouts, typical of exercise training, on gene expression has yet to receive systematic investigation.
5. The molecular programme elicited by resistance exercise and endurance exercise differs markedly. Muscular hypertrophy following resistance exercise is dependent on the activation of satellite cells and their subsequent myogenic maturation. Endurance exercise requires the simultaneous activation of mitochondrial and nuclear genes to enable mitochondrial biogenesis.
6. Future analysis of the regulation of genes by exercise may combine high-throughput technologies, such as gene-chips, enabling the rapid detection and analysis of changes in the expression of many thousands of genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An acute bout of exercise increases skeletal muscle glucose uptake, improves glucose homeostasis and insulin sensitivity, and enhances muscle oxidative capacity. Recent studies have shown an association between these adaptations and the energy-sensing 5' AMP-activated protein kinase (AMPK), the activity of which is increased in response to exercise. Activation of AMPK has been associated with enhanced expression of key metabolic proteins such as GLUT-4, hexokinase II (HKII), and mitochondrial enzymes, similar to exercise. It has been hypothesized that AMPK might regulate gene and protein expression through direct interaction with the nucleus. The purpose of this study was to determine if nuclear AMPK α2 content in human skeletal muscle was increased by exercise. Following 60 min of cycling at 72 +/- 1% of VO2peak in six male volunteers (20.6 +/- 2.1 years; 72.9 +/- 2.1 kg; VO2peak = 3.62 +/- 0.18 l/min), nuclear AMPK α2 content was increased 1.9 +/- 0.4-fold (P = 0.024). There was no change in whole-cell AMPK α2 content or AMPK α2 mRNA abundance. These results suggest that nuclear translocation of AMPK might mediate the effects of exercise on skeletal muscle gene and protein expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We studied the effects of alcohol intake on postexercise muscle glycogen restoration with samples from vastus lateralis being collected immediately after glycogen-depleting cycling and after a set recovery period. Six well-trained cyclists undertook a study of 8-h recovery (2 meals), and another nine cyclists undertook a separate 24-h protocol (4 meals). In each study, subjects completed three trials in crossover order: control (C) diet [meals providing carbohydrate (CHO) of 1.75 g/kg]; alcohol-displacement (A) diet (1.5 g/kg alcohol displacing CHO energy from C) and alcohol + CHO (AC) diet (C + 1.5 g/kg alcohol). Alcohol intake reduced postmeal glycemia especially in A trial and 24-h study, although insulin responses were maintained. Alcohol intake increased serum triglycerides, particularly in the 24-h study and AC trial. Glycogen storage was decreased in A diets compared with C at 8 h (24.4 ± 7 vs. 44.6 ± 6 mmol/kg wet wt, means ± SE, P < 0.05) and 24 h (68 ± 5 vs. 82 ± 5 mmol/kg wet wt, P < 0.05). There was a trend to reduced glycogen storage with AC in 8 h (36.2 ± 8 mmol/kg wet wt, P = 0.1) but no difference in 24 h (85 ± 9 mmol/kg wet wt). We conclude that 1) the direct effect of alcohol on postexercise glycogen synthesis is unclear, and 2) the main effect of alcohol intake is indirect, by displacing CHO intake from optimal recovery nutrition practices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims/hypothesis: Recruitment of the protein c-Cbl to the insulin receptor (IR) and its tyrosine phosphorylation via a pathway that is independent from phosphatidylinositol 3prime-kinase is necessary for insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. The activation of this pathway by insulin or exercise has yet to be reported in skeletal muscle. Methods: Lean and obese Zucker rats were randomly assigned to one of three treatment groups: (i) control, (ii) insulin-stimulated or (iii) acute, exhaustive exercise. Hind limb skeletal muscle was removed and the phosphorylation state of IR, Akt and c-Cbl measured.  Results:   Insulin receptor phosphorylation was increased 12-fold after insulin stimulation (p<0.0001) in lean rats and threefold in obese rats. Acute exercise had no effect on IR tyrosine phosphorylation. Similar results were found for serine phosphorylation of Akt. Exercise did not alter c-Cbl tyrosine phosphorylation in skeletal muscle of lean or obese rats. However, in contrast to previous studies in adipocytes, c-Cbl tyrosine phosphorylation was reduced after insulin treatment (p<0.001). Conclusions/interpretation: We also found that c-Cbl associating protein expression is relatively low in skeletal muscle of Zucker rats compared to 3T3-L1 adipocytes and this could account for the reduced c-Cbl tyrosine phosphorylation after insulin treatment. Interestingly, basal levels of c-Cbl tyrosine phosphorylation were higher in skeletal muscle from insulin-resistant Zucker rats (p<0.05), but the physiological relevance is not clear. We conclude that the regulation of c-Cbl phosphorylation in skeletal muscle differs from that previously reported in adipocytes.