920 resultados para multivariate data analysis
Resumo:
AbstractObjective:To evaluate the association between Hashimoto's thyroiditis (HT) and papillary thyroid carcinoma (PTC).Materials and Methods:The patients were evaluated by ultrasonography-guided fine needle aspiration cytology. Typical cytopathological aspects and/or classical histopathological findings were taken into consideration in the diagnosis of HT, and only histopathological results were considered in the diagnosis of PTC.Results:Among 1,049 patients with multi- or uninodular goiter (903 women and 146 men), 173 (16.5%) had cytopathological features of thyroiditis. Thirty-three (67.4%) out of the 49 operated patients had PTC, 9 (27.3%) of them with histopathological features of HT. Five (31.3%) out of the 16 patients with non-malignant disease also had HT. In the groups with HT, PTC, and PCT+HT, the female prevalence rate was 100%, 91.6%, and 77.8%, respectively. Mean age was 41.5, 43.3, and 48.5 years, respectively. No association was observed between the two diseases in the present study where HT occurred in 31.1% of the benign cases and in 27.3% of malignant cases (p = 0.8).Conclusion:In spite of the absence of association between HT and PCT, the possibility of malignancy in HT should always be considered because of the coexistence of the two diseases already reported in the literature.
Resumo:
We empirically investigate the determinants of EMU sovereign bond yield spreads with respect to the German bund. Using panel data techniques, we examine the role of a wide set of potential drivers. To our knowledge, this paper presents one of the most exhaustive compilations of the variables used in the literature to study the behaviour of sovereign yield spreads and, in particular, to gauge the effect on these spreads of changes in market sentiment and risk aversion. We use a sample of both central and peripheral countries from January 1999 to December 2012 and assess whether there were significant changes after the outbreak of the euro area debt crisis. Our results suggest that the rise in sovereign risk in central countries can only be partially explained by the evolution of local macroeconomic variables in those countries.
Resumo:
We empirically investigate the determinants of EMU sovereign bond yield spreads with respect to the German bund. Using panel data techniques, we examine the role of a wide set of potential drivers. To our knowledge, this paper presents one of the most exhaustive compilations of the variables used in the literature to study the behaviour of sovereign yield spreads and, in particular, to gauge the effect on these spreads of changes in market sentiment and risk aversion. We use a sample of both central and peripheral countries from January 1999 to December 2012 and assess whether there were significant changes after the outbreak of the euro area debt crisis. Our results suggest that the rise in sovereign risk in central countries can only be partially explained by the evolution of local macroeconomic variables in those countries.
Resumo:
First application of compositional data analysis techniques to Australian election data
Resumo:
In any discipline, where uncertainty and variability are present, it is important to haveprinciples which are accepted as inviolate and which should therefore drive statisticalmodelling, statistical analysis of data and any inferences from such an analysis.Despite the fact that two such principles have existed over the last two decades andfrom these a sensible, meaningful methodology has been developed for the statisticalanalysis of compositional data, the application of inappropriate and/or meaninglessmethods persists in many areas of application. This paper identifies at least tencommon fallacies and confusions in compositional data analysis with illustrativeexamples and provides readers with necessary, and hopefully sufficient, arguments topersuade the culprits why and how they should amend their ways
Resumo:
The objective of this paper is to examine whether informal labor markets affect the flows of Foreign Direct Investment (FDI), and also whether this effect is similar in developed and developing countries. With this aim, different public data sources, such as the World Bank (WB), and the United Nations Conference on Trade and Development (UNCTAD) are used, and panel econometric models are estimated for a sample of 65 countries over a 14 year period (1996-2009). In addition, this paper uses a dynamic model as an extension of the analysis to establish whether such an effect exists and what its indicators and significance may be.
Resumo:
A new analytical method was developed to non-destructively determine pH and degree of polymerisation (DP) of cellulose in fibres in 19th 20th century painting canvases, and to identify the fibre type: cotton, linen, hemp, ramie or jute. The method is based on NIR spectroscopy and multivariate data analysis, while for calibration and validation a reference collection of 199 historical canvas samples was used. The reference collection was analysed destructively using microscopy and chemical analytical methods. Partial least squares regression was used to build quantitative methods to determine pH and DP, and linear discriminant analysis was used to determine the fibre type. To interpret the obtained chemical information, an expert assessment panel developed a categorisation system to discriminate between canvases that may not be fit to withstand excessive mechanical stress, e.g. transportation. The limiting DP for this category was found to be 600. With the new method and categorisation system, canvases of 12 Dalí paintings from the Fundació Gala-Salvador Dalí (Figueres, Spain) were non-destructively analysed for pH, DP and fibre type, and their fitness determined, which informs conservation recommendations. The study demonstrates that collection-wide canvas condition surveys can be performed efficiently and non-destructively, which could significantly improve collection management.
Resumo:
ABSTRACT This study aimed to develop a methodology based on multivariate statistical analysis of principal components and cluster analysis, in order to identify the most representative variables in studies of minimum streamflow regionalization, and to optimize the identification of the hydrologically homogeneous regions for the Doce river basin. Ten variables were used, referring to the river basin climatic and morphometric characteristics. These variables were individualized for each of the 61 gauging stations. Three dependent variables that are indicative of minimum streamflow (Q7,10, Q90 and Q95). And seven independent variables that concern to climatic and morphometric characteristics of the basin (total annual rainfall – Pa; total semiannual rainfall of the dry and of the rainy season – Pss and Psc; watershed drainage area – Ad; length of the main river – Lp; total length of the rivers – Lt; and average watershed slope – SL). The results of the principal component analysis pointed out that the variable SL was the least representative for the study, and so it was discarded. The most representative independent variables were Ad and Psc. The best divisions of hydrologically homogeneous regions for the three studied flow characteristics were obtained using the Mahalanobis similarity matrix and the complete linkage clustering method. The cluster analysis enabled the identification of four hydrologically homogeneous regions in the Doce river basin.
Resumo:
GLUT4 protein expression in white adipose tissue (WAT) and skeletal muscle (SM) was investigated in 2-month-old, 12-month-old spontaneously obese or 12-month-old calorie-restricted lean Wistar rats, by considering different parameters of analysis, such as tissue and body weight, and total protein yield of the tissue. In WAT, a ~70% decrease was observed in plasma membrane and microsomal GLUT4 protein, expressed as µg protein or g tissue, in both 12-month-old obese and 12-month-old lean rats compared to 2-month-old rats. However, when plasma membrane and microsomal GLUT4 tissue contents were expressed as g body weight, they were the same. In SM, GLUT4 protein content, expressed as µg protein, was similar in 2-month-old and 12-month-old obese rats, whereas it was reduced in 12-month-old obese rats, when expressed as g tissue or g body weight, which may play an important role in insulin resistance. Weight loss did not change the SM GLUT4 content. These results show that altered insulin sensitivity is accompanied by modulation of GLUT4 protein expression. However, the true role of WAT and SM GLUT4 contents in whole-body or tissue insulin sensitivity should be determined considering not only GLUT4 protein expression, but also the strong morphostructural changes in these tissues, which require different types of data analysis.
Resumo:
This study sought to evaluate the acceptance of "dulce de leche" with coffee and whey. The results were analyzed through response surface, ANOVA, test of averages, histograms, and preference map correlating the global impression data with results of physical, physiochemical and sensory analysis. The response surface methodology, by itself, was not enough to find the best formulation. For ANOVA, test of averages, and preference map it was observed that the consumers' favorite "dulce de leche" were those of formulation 1 (10% whey and 1% coffee) and 2 (30% whey and 1% coffee), followed by formulation 9 (20% whey and 1.25% coffee). The acceptance of samples 1 and 2 was influenced by the higher acceptability in relation to the flavor and for presenting higher pH, L*, and b* values. It was observed that samples 1 and 2 presented higher purchase approval score and higher percentages of responses for the 'ideal' category in terms of sweetness and coffee flavor. It was found that consumers preferred the samples with low concentrations of coffee independent of the concentration of whey thus enabling the use of whey and coffee in the manufacture of dulce de leche, obtaining a new product.
Resumo:
The contents of total phenolic compounds (TPC), total flavonoids (TF), and ascorbic acid (AA) of 18 frozen fruit pulps and their scavenging capacities against peroxyl radical (ROO), hydrogen peroxide (H2O2), and hydroxyl radical (OH) were determined. Principal Component Analysis (PCA) showed that TPC (total phenolic compounds) and AA (ascorbic acid) presented positive correlation with the scavenging capacity against ROO, and TF (total flavonoids) showed positive correlation with the scavenging capacity against OH and ROO However, the scavenging capacity against H2O2 presented low correlation with TF (total flavonoids), TPC (total phenolic compounds), and AA (ascorbic acid). The Hierarchical Cluster Analysis (HCA) allowed the classification of the fruit pulps into three groups: one group was formed by the açai pulp with high TF, total flavonoids, content (134.02 mg CE/100 g pulp) and the highest scavenging capacity against ROO, OH and H2O2; the second group was formed by the acerola pulp with high TPC, total phenolic compounds, (658.40 mg GAE/100 g pulp) and AA , ascorbic acid, (506.27 mg/100 g pulp) contents; and the third group was formed by pineapple, cacao, caja, cashew-apple, coconut, cupuaçu, guava, orange, lemon, mango, passion fruit, watermelon, pitanga, tamarind, tangerine, and umbu pulps, which could not be separated considering only the contents of bioactive compounds and the scavenging properties.
Resumo:
The recent rapid development of biotechnological approaches has enabled the production of large whole genome level biological data sets. In order to handle thesedata sets, reliable and efficient automated tools and methods for data processingand result interpretation are required. Bioinformatics, as the field of studying andprocessing biological data, tries to answer this need by combining methods and approaches across computer science, statistics, mathematics and engineering to studyand process biological data. The need is also increasing for tools that can be used by the biological researchers themselves who may not have a strong statistical or computational background, which requires creating tools and pipelines with intuitive user interfaces, robust analysis workflows and strong emphasis on result reportingand visualization. Within this thesis, several data analysis tools and methods have been developed for analyzing high-throughput biological data sets. These approaches, coveringseveral aspects of high-throughput data analysis, are specifically aimed for gene expression and genotyping data although in principle they are suitable for analyzing other data types as well. Coherent handling of the data across the various data analysis steps is highly important in order to ensure robust and reliable results. Thus,robust data analysis workflows are also described, putting the developed tools andmethods into a wider context. The choice of the correct analysis method may also depend on the properties of the specific data setandthereforeguidelinesforchoosing an optimal method are given. The data analysis tools, methods and workflows developed within this thesis have been applied to several research studies, of which two representative examplesare included in the thesis. The first study focuses on spermatogenesis in murinetestis and the second one examines cell lineage specification in mouse embryonicstem cells.
Resumo:
This research concerns the Urban Living Idea Contest conducted by Creator Space™ of BASF SE during its 150th anniversary in 2015. The main objectives of the thesis are to provide a comprehensive analysis of the Urban Living Idea Contest (ULIC) and propose a number of improvement suggestions for future years. More than 4,000 data points were collected and analyzed to investigate the functionality of different elements of the contest. Furthermore, a set of improvement suggestions were proposed to BASF SE. Novelty of this thesis lies in the data collection and the original analysis of the contest, which identified its critical elements, as well as the areas that could be improved. The author of this research was a member of the organizing team and involved in the decision making process from the beginning until the end of the ULIC.