963 resultados para multisensory statistical learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strongest wish of the customer concerning chemical pulp features is consistent, uniform quality. Variation may be controlled and reduced by using statistical methods. However, studies addressing the application and benefits of statistical methods in forest product sector are scarce. Thus, the customer wish is the root cause of the motivation behind this dissertation. The research problem addressed by this dissertation is that companies in the chemical forest product sector require new knowledge for improving their utilization of statistical methods. To gain this new knowledge, the research problem is studied from five complementary viewpoints – challenges and success factors, organizational learning, problem solving, economic benefit, and statistical methods as management tools. The five research questions generated on the basis of these viewpoints are answered in four research papers, which are case studies based on empirical data collection. This research as a whole complements the literature dealing with the use of statistical methods in the forest products industry. Practical examples of the application of statistical process control, case-based reasoning, the cross-industry standard process for data mining, and performance measurement methods in the context of chemical forest products manufacturing are brought to the public knowledge of the scientific community. The benefit of the application of these methods is estimated or demonstrated. The purpose of this dissertation is to find pragmatic ideas for companies in the chemical forest product sector in order for them to improve their utilization of statistical methods. The main practical implications of this doctoral dissertation can be summarized in four points: 1. It is beneficial to reduce variation in chemical forest product manufacturing processes 2. Statistical tools can be used to reduce this variation 3. Problem-solving in chemical forest product manufacturing processes can be intensified through the use of statistical methods 4. There are certain success factors and challenges that need to be addressed when implementing statistical methods

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile malwares are increasing with the growing number of Mobile users. Mobile malwares can perform several operations which lead to cybersecurity threats such as, stealing financial or personal information, installing malicious applications, sending premium SMS, creating backdoors, keylogging and crypto-ransomware attacks. Knowing the fact that there are many illegitimate Applications available on the App stores, most of the mobile users remain careless about the security of their Mobile devices and become the potential victim of these threats. Previous studies have shown that not every antivirus is capable of detecting all the threats; due to the fact that Mobile malwares use advance techniques to avoid detection. A Network-based IDS at the operator side will bring an extra layer of security to the subscribers and can detect many advanced threats by analyzing their traffic patterns. Machine Learning(ML) will provide the ability to these systems to detect unknown threats for which signatures are not yet known. This research is focused on the evaluation of Machine Learning classifiers in Network-based Intrusion detection systems for Mobile Networks. In this study, different techniques of Network-based intrusion detection with their advantages, disadvantages and state of the art in Hybrid solutions are discussed. Finally, a ML based NIDS is proposed which will work as a subsystem, to Network-based IDS deployed by Mobile Operators, that can help in detecting unknown threats and reducing false positives. In this research, several ML classifiers were implemented and evaluated. This study is focused on Android-based malwares, as Android is the most popular OS among users, hence most targeted by cyber criminals. Supervised ML algorithms based classifiers were built using the dataset which contained the labeled instances of relevant features. These features were extracted from the traffic generated by samples of several malware families and benign applications. These classifiers were able to detect malicious traffic patterns with the TPR upto 99.6% during Cross-validation test. Also, several experiments were conducted to detect unknown malware traffic and to detect false positives. These classifiers were able to detect unknown threats with the Accuracy of 97.5%. These classifiers could be integrated with current NIDS', which use signatures, statistical or knowledge-based techniques to detect malicious traffic. Technique to integrate the output from ML classifier with traditional NIDS is discussed and proposed for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Violence has always been a part of the human experience, and therefore, a popular topic for research. It is a controversial issue, mostly because the possible sources of violent behaviour are so varied, encompassing both biological and environmental factors. However, very little disagreement is found regarding the severity of this societal problem. Most researchers agree that the number and intensity of aggressive acts among adults and children is growing. Not surprisingly, many educational policies, programs, and curricula have been developed to address this concern. The research favours programs which address the root causes of violence and seek to prevent rather than provide consequences for the undesirable behaviour. But what makes a violence prevention program effective? How should educators choose among the many curricula on the market? After reviewing the literature surrounding violence prevention programs and their effectiveness, The Second Step Violence Prevention Curriculum surfaced as unique in many ways. It was designed to address the root causes of violence in an active, student-centred way. Empathy training, anger management, interpersonal cognitive problem solving, and behavioural social skills form the basis of this program. Published in 1992, the program has been the topic of limited research, almost entirely carried out using quantitative methodologies.The purpose of this study was to understand what happens when the Second Step Violence Prevention Curriculum is implemented with a group of students and teachers. I was not seeking a statistical correlation between the frequency of violence and program delivery, as in most prior research. Rather, I wished to gain a deeper understanding of the impact ofthe program through the eyes of the participants. The Second Step Program was taught to a small, primary level, general learning disabilities class by a teacher and student teacher. Data were gathered using interviews with the teachers, personal observations, staff reports, and my own journal. Common themes across the four types of data collection emerged during the study, and these themes were isolated and explored for meaning. Findings indicate that the program does not offer a "quick fix" to this serious problem. However, several important discoveries were made. The teachers feU that the program was effective despite a lack of concrete evidence to support this claim. They used the Second Step strategies outside their actual instructional time and felt it made them better educators and disciplinarians. The students did not display a marked change in their behaviour during or after the program implementation, but they were better able to speak about their actions, the source of their aggression, and the alternatives which were available. Although they were not yet transferring their knowledge into positive action,a heightened awareness was evident. Finally, staff reports and my own journal led me to a deeper understanding ofhow perception frames reality. The perception that the program was working led everyone to feel more empowered when a violent incident occurred, and efforts were made to address the cause rather than merely to offer consequences. A general feeling that we were addressing the problem in a productive way was prevalent among the staff and students involved. The findings from this investigation have many implications for research and practice. Further study into the realm of violence prevention is greatly needed, using a balance of quantitative and qualitative methodologies. Such a serious problem can only be effectively addressed with a greater understanding of its complexities. This study also demonstrates the overall positive impact of the Second Step Violence Prevention Curriculum and, therefore, supports its continued use in our schools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Children were afforded the opportunity to control the order of repetitions for three novel spatiotemporal sequences. The following was predicted: a) children and adults in the self-regulated (SELF) groups would produce faster movement (MT) and reaction times (R T) and greater recall success (RS) during retention compared to the age-matched yoked (YOKE) groups; b) children would choose to switch sequences less often than adults; c) adults would produce faster MT and RT and greater RS than the children during acquisition and retention, independent of experimental group. During acquisition, no effects were seen for RS, however for MT and RT there was a main effect for age as well as block. During retention a main effect for practice condition was seen for RS and failed to reach statistical significance for MT and RT, thus partially supporting our first and second hypotheses. The third hypothesis was not supported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This case study traces the evolution of library assignments for biological science students from paper-based workbooks in a blended (hands-on) workshop to blended learning workshops using online assignments to online active learning modules which are stand-alone without any face-to-face instruction. As the assignments evolved to adapt to online learning supporting materials in the form of PDFs (portable document format), screen captures and screencasting were embedded into the questions as teaching moments to replace face-to-face instruction. Many aspects of the evolution of the assignment were based on student feedback from evaluations, input from senior lab demonstrators and teaching assistants, and statistical analysis of the students’ performance on the assignment. Advantages and disadvantages of paper-based and online assignments are discussed. An important factor for successful online learning may be the ability to get assistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous work (Olshausen & Field 1996), an algorithm was described for learning linear sparse codes which, when trained on natural images, produces a set of basis functions that are spatially localized, oriented, and bandpass (i.e., wavelet-like). This note shows how the algorithm may be interpreted within a maximum-likelihood framework. Several useful insights emerge from this connection: it makes explicit the relation to statistical independence (i.e., factorial coding), it shows a formal relationship to the algorithm of Bell and Sejnowski (1995), and it suggests how to adapt parameters that were previously fixed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pair Programming is a technique from the software development method eXtreme Programming (XP) whereby two programmers work closely together to develop a piece of software. A similar approach has been used to develop a set of Assessment Learning Objects (ALO). Three members of academic staff have developed a set of ALOs for a total of three different modules (two with overlapping content). In each case a pair programming approach was taken to the development of the ALO. In addition to demonstrating the efficiency of this approach in terms of staff time spent developing the ALOs, a statistical analysis of the outcomes for students who made use of the ALOs is used to demonstrate the effectiveness of the ALOs produced via this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The UK new-build housing sector is facing dual pressures to expand supply, whilst delivering against tougher planning and Building Regulation requirements; predominantly in the areas of sustainability. The sector is currently responding by significantly scaling up production and incorporating new technical solutions into new homes. This trajectory of up-scaling and technical innovation has been of research interest; but this research has primarily focus on the ‘upstream’ implications for house builders’ business models and standardised design templates. There has been little attention, though, to the potential ‘downstream’ implications of the ramping up of supply and the introduction of new technologies for build quality and defects. This paper contributes to our understanding of the ‘downstream’ implications through a synthesis of the current UK defect literature with respect to new-build housing. It is found that the prevailing emphasis in the literature is limited to the responsibility, pathology and statistical analysis of defects (and failures). The literature does not extend to how house builders individually and collectively, in practice, collect and learn from defects information. The paper concludes by describing an ongoing collaborative research programme with the National House Building Council (NHBC) to: (a) understand house builders’ localised defects analysis procedures, and their current knowledge feedback loops to inform risk management strategies; and, (b) building on this understanding, design and test action research interventions to develop new data capture, learning processes and systems to reduce targeted defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project engages people with learning disabilities as co-researchers and co-designers in the development of multisensory interactive artworks, with the aim of making museums or heritage sites more interesting, meaningful, and fun. This article describes our explorations, within this context, of a range of technologies including squishy circuits, littleBits, and easy-build websites, and presents examples of objects created by the co-researchers such as “sensory boxes” and interactive buckets, baskets, and boots. Public engagement is an important part of the project and includes an annual public event and seminar day, a blog rich with photos and videos of the workshops, and an activities book to give people ideas for creating their own sensory explorations of museums and heritage sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies have widely accepted the assumption that learning processes can be promoted when teaching styles and learning styles are well matched. In this study, the synergy between learning styles, learning patterns, and gender as a selected demographic feature and learners’ performance were quantitatively investigated in a blended learning setting. This environment adopts a traditional teaching approach of ‘one-sizefits-all’ without considering individual user’s preferences and attitudes. Hence, evidence can be provided about the value of taking such factors into account in Adaptive Educational Hypermedia Systems (AEHSs). Felder and Soloman’s Index of Learning Styles (ILS) was used to identify the learning styles of 59 undergraduate students at the University of Babylon. Five hypotheses were investigated in the experiment. Our findings show that there is no statistical significance in some of the assessed factors. However, processing dimension, the total number of hits on course website and gender indicated a statistical significance on learners’ performance. This finding needs more investigation in order to identify the effective factors on students’ achievement to be considered in Adaptive Educational Hypermedia Systems (AEHSs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

House builders play a key role in controlling the quality of new homes in the UK. The UK house building sector is, however, currently facing pressures to expand supply as well as conform to tougher low carbon planning and Building Regulation requirements; primarily in the areas of sustainability. There is growing evidence that the pressure the UK house building industry is currently under may be eroding build quality and causing an increase in defects. It is found that the prevailing defect literature is limited to the causes, pathology and statistical analysis of defects (and failures). The literature does not extend to examine how house builders individually and collectively, in practice, collect and learn from defects experience in order to reduce the prevalence of defects in future homes. The theoretical lens for the research is organisational learning. This paper contributes to our understanding of organisational learning in construction through a synthesis of current literature. Further, a suitable organisational learning model is adopted. The paper concludes by reporting the research design of an ongoing collaborative action research project with the National House Building Council (NHBC), focused on developing a better understanding of house builders’ localised defects analysis procedures and learning processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project engages people with learning disabilities to participate as co-researchers and explore museum interpretation through multisensory workshops using microcontrollers and sensors to enable alternative interactive visitor experiences in museums and heritage sites. This article describes how the project brings together artists, engineers, and experts in multimedia advocacy, as well as people with learning disabilities in the co-design of interactive multisensory objects that replicate or respond to objects of cultural significance in our national collections. Through a series of staged multi-sensory art and electronics workshops, people with learning disabilities explore how the different senses could be utilised to augment existing artefacts or create entirely new ones. The co-researchers employ multimedia advocacy tools to reflect on and to communicate their experiences and findings.