929 resultados para multiscale fractal dimension
Resumo:
This work combines symbolic machine learning and multiscale fractal techniques to generate models that characterize cellular rejection in myocardial biopsies and that can base a diagnosis support system. The models express the knowledge by the features threshold, fractal dimension, lacunarity, number of clusters, spatial percolation and percolation probability, all obtained with myocardial biopsies processing. Models were evaluated and the most significant was the one generated by the C4.5 algorithm for the features spatial percolation and number of clusters. The result is relevant and contributes to the specialized literature since it determines a standard diagnosis protocol. © 2013 Springer.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The fracture surfaces express the sequence of events of energy release due to crack propagation by linking the relief of the fracture to the loading stresses. This study aims to evaluate the heterogeneity of the critical zone for the advancement of the crack along its entire length in a thermoset composite carbon fiber and epoxy matrix, fractured in DCB testing (Double Cantilever Beam) and ENF (End-Notched Flexure). Investigations were made from image stacks obtained by optical reflection of extended depth from focus reconstruction. The program NIH Image J was used to obtain elevation map and fully focused images of the fracture surface, whose topographies were quantitatively analyzed. The monofractal behavior for DCB samples was assessed as being heterogeneous along the crack front and along the crack for all the conditionings. For the samples fractured in ENF test, there was a strong positive correlation to the natural condition, considering the fibers at 0° for the monofractal dimension and structural dimension (Df and Ds). For fibers at 90° to crack propagation, there was a moderate positive correlation for the textural dimension of natural condition. However, for the samples under ultraviolet condition and those subjected to thermal cycles, there was no correlation between the fractal dimension and fracture toughness in mode II
Resumo:
For the development of this graduate work of fractal fracture behavior, it is necessary to establish references for fractal analysis on fracture surfaces, evaluating, from tests of fracture tenacity on modes I, II and combined I / II, the behavior of fractures in fragile materials, on linear elastic regime. Fractures in the linear elastic regime are described by your fractal behavior by several researchers, especially Mecholsky JJ. The motivation of that present proposal stems from work done by the group and accepted for publication in the journal Materials Science and Engineering A (Horovistiz et al, 2010), where the model of Mecholsky could not be proven for fractures into grooved specimens for tests of diametric compression of titania on mode I. The general objective of this proposal is to quantify the distinguish surface regions formed by different mechanisms of fracture propagation in linear elastic regime in polymeric specimens (phenolic resin), relating tenacity, thickness of the specimens and fractal dimension. The analyzed fractures were obtained from SCB tests in mode I loading, and the acquisition of images taken using an optical reflection microscope and the surface topographies obtained by the extension focus method of reconstruction, calculating the values of fractal dimension with the use of maps of elevations. The fractal dimension was classified as monofractal dimension (Df), when the fracture is described by a single value, or texture size (Dt), which is a macroscopic analysis of the fracture, combined with the structural dimension (Ds), which is a microscopic analysis. The results showed that there is no clear relationship between tenacity, thickness and fractal values for the material investigated. On the other hand it is clear that the fractal values change with the evolution of cracks during the fracture process ... (Complete abstract click electronic access below)
Resumo:
Fracture surfaces are the fracture process marks, taht it is characterized by energy release guieded by failure mode. The fracture toughness express this energy em stress and strain terms in pre-cracked samples. The strectch zone is the characteristic region forms by the transition of fatigue fracture and final fracture and it width demonstrate the relation with failure energy release.The quantitative fractography is a broadly tool uses in failure surfaces characterization that it can point to a material’s aspect or a fracture process. The image processing works like an investigation tool, guinding a lot of studies in this area. In order to evaluate the characterization effectivity and it respectivity studies, it used 300M steel that it was thermal treated by an aeronautical process known and it characterized by tensile test and energy dispersive spectroscopy (EDS). The tensile test of this material, made by ASTM E8, allowed the head treatment effectivity confirmation, beyond of mechanics porperties determination. The EDS confirmed the material composition, beyond of base the discussion about fracture mechanism presence. The fracture toughness test has also made, that it works to obtain the fracture surfeaces studies below self-similarity and self-affinity approaches. In front of all the exposed it was possible to conclude that the fractal dimension works like a study parameter of fracture process, allowinf the relation of their values with changes in thickness, which interferes directly in material’s behaviour in fracture toughness approach